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Abstract
The US Midwest is the largest and most intensive corn (Zea mays, L.) production region in the world.
However, N losses from corn systems cause serious environmental impacts including dead zones in
coastal waters, groundwater pollution, particulate air pollution, and global warming. New approaches
to reducing N losses are urgently needed. N surplus is gaining attention as such an approach for
multiple cropping systems. We combined experimental data from 127 on-farm field trials conducted
in seven US states during the 2011–2016 growing seasons with biochemical simulations using the
PNM model to quantify the benefits of a dynamic location-adapted management approach to reduce
N surplus. We found that this approach allowed large reductions in N rate (32%) and N surplus
(36%) compared to existing static approaches, without reducing yield and substantially reducing
yield-scaled N losses (11%). Across all sites, yield-scaled N losses increased linearly with N surplus
values above ∼48 kg ha−1. Using the dynamic model-based N management approach enabled growers
to get much closer to this target than using existing static methods, while maintaining yield.
Therefore, this approach can substantially reduce N surplus and N pollution potential compared to
static N management.

1. Introduction

The US produces 29% of global corn (Zea mays, L.;
FAO 2014), with 83% located in the Midwest corn
belt (USDA 2017). However, inefficiencies in nitro-
gen management lead to substantial losses of N to
the environment, including nitrate (NO3) leaching
fromthe soil, causinggroundwaterpollution (Ferguson
2015, Struffert et al 2016), contamination of water-
ways (David et al 2010), and impairment of aquatic
ecosystems (Diaz and Rosenberg 2008). Transport of
NO3 to the Gulf of Mexico creates a dead zone which
was the largest ever recorded in 2017 (NOAA 2017).
Loss of ammonia gas (NH3) from N fertilizer appli-
cation contributes to fine particulate air pollution, an
important cause of respiratory diseases (Pinder et al
2007, Heo et al 2016). Nitrous oxide (N2O) is a potent
greenhouse gas and contributes significantly to global
warming (Millar et al 2010). Other gaseous N species

contribute to formation of ozone, an important air
pollutant damaging plant and human health (Kampa
and Castanas 2008, Avnery et al 2011). Altogether, N
pollution from anthropogenic sources is very costly
to society (Erisman et al 2013), estimated at $210
billion per year for the USA alone during recent
decades (Sobota et al 2015). Costs of damages from
N fertilizer alone exceeded $50 million per year for
many counties in Minnesota (Keeler et al 2016).

N surplus—the difference between N inputs and
the N removed from the field at harvest—can be used
as an index of the efficiency of N management in crop-
ping systems (Van Groenigen et al 2010, Cui et al
2013, Chen et al 2014, Zhang et al 2015). N sur-
plus was found to be positively correlated with both
NO3 leaching losses (Zhou and Butterbach-Bahl 2014,
Zhao et al 2016) and gaseous N2O losses (Van Groeni-
gen et al 2010, Decock 2014, Venterea et al 2016).
N losses are typically curvilinear related to N surplus,
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with yield-scaled losses increasing rapidly above
N surplus values of 0-to-50 kg ha−1 (Van Groenigen
et al 2010, Pittelkow et al 2014, Walter et al 2015,
Venterea et al 2016, Zhao et al 2016). From a nutri-
ent management perspective, N surplus values should
be positive—i.e. not mining the soil of N (EU Nitro-
gen Expert Panel 2015)—but as low as possible without
reducing yields.

N surplus is being used in global analyses to track
progress over time for individual countries to reduce
environmental impacts of crop production (Zhang
et al 2015). N surplus is also reported for countries
by the OECD (OECD 2013). In the US, McLellan et al
(2018) recently suggested N surplus as a suitable index
for tracking the sustainability of US maize production
in a supply-chain context. However, setting appropri-
ate N surplus targets requires knowledge of the realistic
and achievable N surplus values.

The majority (68%) of US corn fields do not apply
fertilizer to the crop during the active growing season,
and instead rely on large applications of N before or
at planting (USDA ERS 2010). While this approach
reduces logistical considerations associated with in-
season N application, it increases the risk of N losses,
especially in humid climates (van Es et al 2007). There
are multiple recommendation tools currently avail-
able for US corn production (see Morris et al 2018
for a recent review). University Cooperative Extension
services, crop consultants and retailers typically make
fertilizer recommendations that are static regardless of
seasonal weather, and have limited adaptation to the
local production environment. While this approach is
easy to implement, it can lead to excessive N application
and losses (Sela et al 2017).

Recent advances in computational and information
technologies stimulated a new generation of dynamic
in-season N recommendation tools based on the
application of mechanistic models. For US maize pro-
duction, application of such tools include the APSIM
model (Jin et al 2017), the Maize-N model (Thomp-
son et al 2015), or the Adapt-N tool (Sela et al 2016).
These tools allow continuous modeling of biogeo-
chemical interactions to estimate soil nutrient levels,
and use this information to calculate real-time fer-
tilizer recommendations. Adapt-N’s model-based N
recommendations have been compared with static N
rates in commercial US maize production where they
were found to be economically and environmentally
advantageous (Sela et al 2016, 2017).

There is a pressing need to reduce losses of N to
the environment in order to improve water quality and
mitigate atmospheric losses. Our study uses a com-
bination of data from 127 on-farm field experiments
along with site-specific simulation results to better
understand the potential of advanced dynamic model-
based tools (in this case Adapt-N, henceforth ‘dynamic
approach’) to reduce N surplus and consequently N
losses, compared with the current grower practice. The
driving hypothesis is that such a dynamic approach

to N management that is also adapted to the local
production environment can lower N fertilizer rates
without yield losses, and thereby reduce N surplus and
pollution and its cost to society.

2. Materials and methods

2.1. Field trials
We used data from 127 on-farm field trials (appendix
1 available at stacks.iop.org/ERL/13/054010/mmedia)
conducted during the years 2011–2016. In all trials a
static N rate, obtained from the grower or from a state
recommendation system, was compared to a dynamic
N rate developed by the Adapt-N tool. Two types of
trials were used: (i) a side by side strip trial where two N
rates (generated either by a static or dynamic approach)
were applied and the resulting yield was compared; and
(ii) a multi-N rate trial, where a series of N rates were
applied, covering a wide range of N values. A response
function was then constructed via regression analysis
relating N rate to yield in each specific trial. Using this
response function the yield from either the static or
Adapt-N recommendation was calculated and used in
the analysis.

All trials used a replicated, spatially-balanced ran-
domized complete block design (van Es et al 2007).
The experiments were located in seven US states
(figure 1): Iowa, Indiana, Wisconsin, Ohio, New York,
Maine, and North Carolina, and spanned different soil
types, soil organic matter contents and weather pat-
terns. In 91% of trials corn was grown for grain and in
9% for silage. The type of fertilizer and the amount of
N applied prior to planting varied among experiments
according to grower practices. Manure was applied in
20% of the trials in varying quantities and timing fol-
lowing grower practices. The experiments differed only
in the in-season N application amount, decided either
dynamically by the Adapt-N tool or following a static
approach.Dataon the experimental sites,N treatments,
yields, and literature references are in appendix 1, and
details of the static N rates for the different regions are
in appendix 2. All statistical analyses in this study were
performed using the R language and environment for
statistical computing (R Core Team 2015).

2.2. Dynamic model-based N management
The dynamic approach to managing N is demonstrated
here using the Adapt-N tool (www.Adapt-N.com),
which is a modeling framework to monitor crop N
availability in maize fields (Sela et al 2016). The core
of the Adapt-N tool is the Precision Nitrogen Manage-
ment (PNM) biogeochemical model (Melkonian et al
2007, Marjerison et al 2016), an amalgamation of the
LEACHN soil hydrology and chemistry model (Hutson
and Wagenet 1995) and a corn growth model (Muchow
and Sinclair 1995) that has received extensive subse-
quent adjustments, parameter calibrations, and field
testing. The PNM model runs on a daily time-step,
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Figure 1. 127 experimental sites used for the analysis. Background image source credits: ESRI world imagery base map.

and solves in one dimension (depth) the biochemical
transformations of N as modified by environmental
conditions such as soil water content and tempera-
ture. The PNM model and its constituent modules
were calibrated and validated in previous studies under
different production environments, presenting good
agreement against measured N leaching, soil N miner-
alization, and crop N uptake (Jabro et al 1995, Sogbedji
et al 2001a, Sogbedji et al 2001b, Jabro et al 2006,
Sogbedji et al 2006, Marjerison et al 2016, Melkonian
et al 2017). The Adapt-N tool uses daily simulation
results of soil N availability and crop N uptake from the
PNM model to derive N recommendations to reach
a target prescribed yield goal based on an N mass
balance approach. The tool uses high-resolution cli-
mate data (4× 4 km) derived from routines using the
US National Oceanic&Atmospheric Administration’s
Rapid Refresh (NOAA RAP) weather model and oper-
ational Doppler radars. Detailed description of the
Adapt-N tool, the main governing equations, and the
data needed to run a simulation, are in appendix 3.

2.3. N surplus and NUE calculation
N surplus and NUE were calculated using the following
equations:

Nsurplus = Ninput − Noutput (1)

NUE = Noutput∕Ninput (2)

where Ninput is the sum of N fertilizer rate in each
treatment and N credits from manure applications and

previous crops as determined by Adapt-N, and Noutput
is the amount of N removed from the field at har-
vest. For trials where silage was grown it was assumed
that all above-ground crop N is removed at harvest,
while in the corn grain trials it was assumed that only
the grain is removed from the field and the stover is
returned to the system. Crop N content was not mea-
sured in the reported field experiments, but is expected
to vary depending on field conditions and crop N
availability. To account for this variability, in the tri-
als involving silage corn N was estimated by the PNM
model. For corn grain trials, grain N was estimated
using the following equation (McLellan et al 2018),
developed based on analysis of 163 observations from
17 previously published Midwest corn cropping studies
(R2 = 0.22; P< 0.0001):

Grain N% = 1.0974 + 0.00124 × Fertilizer N Inputs
(kgN ha−1)

(3)

where Grain_N% is the percentage of grain N out of
the total oven-dry grain. The amount of N removed by
grain harvest was consequently estimated by multiply-
ing Grain_N% with the measured grain yield, adjusted
to oven-dry weight (2% moisture). ANOVA analysis
found the overall model highly significantly different
from a null model of the mean (p< 0.0001). The
mean and standard deviation values found for our
data (dynamic and static dataset combined) using this
regression equation (1.33% ± 0.06 ), are similar to the
values found for aggregated US data (n = 2483) pub-
lished by the US Grain Council for the 2013–2016 corn
growing seasons (1.36%± 0.09; USGC 2016, 2013,
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assuming a ratio of 6.25 of grain protein to grain N
(Belitz et al 2009)).

2.4. Simulated environmental N losses
Environmental N losses, i.e. leaching below the rooting
zone and gaseous losses to the atmosphere, were simu-
lated for each site using the PNM model for either the
Adapt-N or the static N rates. In addition to denitrifica-
tion, the PNM model simulates ammonia volatilization
and the two products are reported as gaseous N losses.
In this study we combine leaching and gaseous N losses
and report the total simulated N losses. The simula-
tions spanned 365 days, from November 1st of the
previous season to November 1st of the experimen-
tal season. To ensure that reductions in N losses did
not reduce yield, simulation results were coupled with
the measured yield at each site to derive yield-scaled
(YS) total losses for each treatment (equation 4):

Total YSN losses = area-scaledN losses∕
grain yield (4)

where Total YS N losses are in (kg ha−1 N/Mg ha−1

yield), total area-scaledN losses are in kg ha−1 andgrain
yield is in Mg ha−1 (15.5% moisture). Silage yields,
originally reported in 65% moisture, were converted to
15.5% moisture to be comparable to grain yield trials.

3. Results and discussion

3.1. Dynamic N management effect on applied N
inputs, N surplus and NUE
The static N management approach used in this study
represents improved N management practice through
timely sidedress fertilizer use, especially compared
to fall or spring preplant applications. However, the
dynamic approach allows additional flexibility in man-
aging N inputs as it identifies both (1) potential N
rate reductions to prevent N excesses or (2) potential
N increases to prevent deficiencies. We found that in
83% of the trials the dynamic approach reduced N rates
(average−57.3 kg ha−1) compared to a static approach,
and increased N rates in the remaining trials (aver-
age +35.4 kg ha−1). Overall N inputs were reduced on
average by a 18% (−42.0 kg ha−1; p< 0.0001; figure
2(a), table 1), and lead to a statistically insignificant
yield reduction (average −50.4 kg ha−1, 0.5%). Pre-
vious studies similarly found that using a dynamic
approach for N rate improved profitability compared
to a static approach, mostly through decreased fertil-
izer expense without reducing yield (Sela et al 2016,
2017).

In the N mass balance approach of Adapt-N,
the recommended N rate accounts for future N
availability from site-specific soil organic matter min-
eralization, thus maximizing utilization of the soil’s
own N resources (appendix 3). Previous studies had
suggested that nutrient removal from the field at har-
vest should be lower than nutrients inputs, to avoid

unsustainable ‘mining’ of soil nutrients (Sheldrick et al
2002, Zhang et al 2015). Applying a dynamic approach
to N management allowed a significant increase in effi-
ciency (figures 2(c) and (d) and table 1): a reduction
in soil N surplus of 36% (−34.9 kg ha−1; p< 0.0001),
and an increase in NUE of 17% (+ 0.1 kg ha−1/kg ha−1;
p< 0.0001). Across all trials, the average N surplus and
NUE values in the dynamic approach are 61.0 kg ha−1

and 0.72 kg ha−1/kg ha−1, respectively. Only a minority
of trials had N surplus lower than zero or NUE higher
than 1 (7 trials, 6%). Scharf et al (2011) have reported
similar N surplus and NUE using another dynamic
N recommendation method, crop canopy sensing, for
trials in Missouri (US). These NUE values are higher
than those recently reported for corn production in
the US (0.68, average for the years 2002–2011; (Zhang
et al 2015)). Furthermore, (Zhang et al 2015) had
defined a target NUE of 0.75 by the year 2050 for US
crop production to sustainably match growth in corn
demand. The NUE values under the dynamic approach
are already comparable with this target value.

The results show much higher N surplus values for
fields where N management included manure appli-
cations, 114.9 and 147.6 kg ha−1 compared with 47.8
and 83.3 kg ha−1 for trials excluding manure for the
dynamic and static datasets, respectively. In all our trials
manure was applied before the growing season, either
in the previous fall, at early spring before planting, or
in both. In 52% of the cases where manure was applied,
the dynamic approach recommended no in-season N
application, indicating sufficient or excessive soil N at
sidedress time.

3.2. EffectofdynamicNmanagementonyield-scaled
N losses
Using the Adapt-N tool was found to significantly
reduce yield-scaled N losses by 11% (figure 3(a),
table 1). Most of the large yield-scaled losses occurred
under (i) manured applications; and (ii) static N
management, demonstrating repeated excessive N
applications. The large variation in yield-scaled N losses
for a given level of N surplus is in accordance with pre-
vious studies (Van Groenigen et al 2010, Decock 2014,
Zhou and Butterbach-Bahl 2014, Zhao et al 2016).
Highervariabilitywas found in the lower rangeofNsur-
plus values, where similar values show a wide range of
simulated N losses. Much of this variation is attributed
to cases where large residual N was simulated for the
soil profile root zone at the end of the growing season
(appendix 4), mostly associated with the 2012 grow-
ing season, which was much drier than the average.
These high residual soil N levels highlight a limitation
of N surplus as predictor of N losses, which implicitly
assumes most residual N is being lost to the environ-
ment. However, this large reservoir of residual N is at
high risk of eventually being lost to the environment,
as shown by measurements of large N losses in Mid-
west streams following the anomalous dry season of
2012 (Van Metre et al 2016). These N losses could
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Figure 2. Comparison of Total N inputs, N removed from the field, N surplus and NUE of the static vs dynamic approaches ((a), (b),
(c) and (d) respectively). Red circles represent mean values. Dashed lines represent N surplus value of zero, and NUE value of one.

Table 1. Mean and standard deviation of N input, output and environmental N losses of the experimental sites. For N surplus and NUE the
uncertainty in the values is also presented, based on the 95% confidence envelope of grain N. All reported yields are at standard 15.5%
moisture.

Variable Units Dynamic Static Difference (Dynamic-Static)

mean SD mean SD

N rec kg ha−1 91.2 60.8 133.2 73.1 −42.0 (32%)∗∗∗
Total N inputs kg ha−1 194.2 64.2 236.2 70.2 −42.0 (18%)∗∗∗
N surplus kg ha−1 61.0±15.4 53.2 95.9±17.26 17.3 −34.9 (36%)∗∗∗
NUE kg ha−1 / kg ha−1 0.72±0.08 0.18 0.62±0.07 0.07 +0.1 (17%)∗∗∗
Yield Mg ha−1 11.4 2.3 11.45 2.22 −0.05 (0.5%) ns
Total YS N loss kg ha−1 N/Mg ha−1 9.91 5.1 11.2 5.5 −1.27 (11%)∗∗∗

YS=Yield-scaled. Statistical significance levels: ∗∗∗ p< 0.0001, ns = not significant. N rec = N recommendation at sidedress time. Total N

inputs include organic and inorganic N inputs and credits from previous crops (determined using the Adapt-N tool). Total N does not include

input of N from mineralization of soil organic matter or areal deposition.

potentially be reduced by adoption of winter cover
cropping, which can consume residual N in the soil
remaining from the main growing season and thus
reduce N losses by leaching by an average of 54%
(Woodbury et al 2017).

To test whether an N surplus threshold exists where
N losses begin to increase significantly, the data were
analyzed by piece-wise regression. Typically, the rela-
tionship of N surplus and N losses is characterized
in the literature in some form of a non-linear func-
tion (e.g. Van Groenigen et al 2010, Cui et al 2013,
Zhao et al 2016, McLellan et al 2018), but some stud-
ies found a linear function to be the best fit (i.e.
Decock2014,ZhouandButterbach-Bahl2014).Within
a range of low N surplus values, losses are expected
to be minimal as any increase in N rate will lead to
higher yield (and hence low yield-scaled N losses).
In our results, since the Adapt-N tool simulates total
gaseous losses (including N2), beyond some threshold

of N surplus value losses are expected to increase
linearly (i.e. any additional increase in N inputs will
be lost to the environment). Therefore, supported by
our biophysical understanding of the system, the data
were fitted with a discontinuous ‘hockey stick’ type
function comprised of two segments, one a plateau
(unchanging) and one linearly increasing:

𝑦 =
{

𝑎 + (b × i) , 𝑥 < 𝑖

𝑎 +
(
𝑏 × Nsurplus

)
, 𝑥 > 𝑖

(5)

where y is total yield-scaled N losses, and i, a, and b are
fitted parameters (table 2). The i parameter represents
the breakpoint connecting the plateau and linear seg-
ments of the function, i.e. the N surplus value where
N losses begin to increase. Combining the dynamic
and static N rates into a single dataset offers a wide
range of N surplus values and N losses. However, in
our data the two N treatments in each trial relate to the
same field, and therefore combining them violates the
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Figure 3. (a) The effect of N surplus on total yield-scaled N losses for the dynamic and static N fertilizer management approaches.
Binned data (equal size bins of five observations) are presented to illustrate the general trend, but were not used for statistical analysis.
Regression analysis was performed separately for the dynamic and static data (blue and red lines, respectively). The shaded area
represent the critical N values range of 38.5–57.5, found for the dynamic and static datasets. (b) Cumulative distribution of N surplus
values for the dynamic and static data. The shaded area represents the N surplus range of 0–48 kg ha−1. The black dashed line represents
N surplus values of 78 kg ha−1 suggested in Zhang et al (2015) as the upper limit for sustainable crop production.

Table 2. Regression parameters and their associated uncertainty, calculated using bootstrapping for the static and dynamic datasets (n = 127).
Details regarding the uncertainty analysis are presented in appendix 5.

Dynamic Static

Parameter Estimate SE 95% CI Estimate SE 95% CI

i 38.54a 8.41 27.76–56.59 57.47a 12.77 40.40–81.66
a 4.24a 0.69 2.55–5.32 4.04a 0.85 2.64–5.24
b 0.082a 0.007 0.0686–0.0972 0.070a 0.007 0.0597–0.081

RSE (DF) 3.29 (124) 3.86 (124)

a P< 0.001. SE = standard error. CI = confidence interval. RSE = residual standard error. DF = degrees of freedom.

regression assumption of independent observations.
We therefore analyzed each dataset independently.

Figure 3(a) and table 2 present the regression
lines and parameters calculated for the dynamic and
static datasets. Both yielded slightly different esti-
mates of the critical N surplus value, 38.5 kg ha−1

and 57.5 kg ha−1 for the dynamic and static datasets,
respectively. This range is in line with those found in
previous studies for corn and other crops (Van Groeni-
gen et al 2010, Pittelkow et al 2014, Walter et al 2015,

Venterea et al 2016, Zhao et al 2016). It is worth
noting that there is substantial uncertainty associated
with these inflection points, as explored using a boot-
strapping approach (95% confidence range of 29 and
41 kg ha−1, for the dynamic and static datasets, respec-
tively; table 2, appendix 5). For the remainder of this
paper we chose to use 48 kg ha−1—the mean value
of the dynamic and static dataset estimates—as an
environmental N surplus target to reduce N losses.
On the lower end, N surplus should be higher than
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Table 3. Factors affecting N surplus based on multiple regression
analysis (n = 127).

Dynamic Static

Parameter Estimate SE Estimate SE

Intercept −89.00b 18.00 −86.57b 20.81
Total N applied 0.73b 0.04 0.74b 0.04
SDratio −16.66a 7.43 −16.02 ns 9.87
Soil texture factor 2c 12.85 ns 6.67 16.07a 8.05
Soil texture factor 3d 17.18 ns 10.09 18.62 ns 11.98
Annual rainfall −0.005 ns 0.01 −0.010 ns 0.01
Organic matter % 3.59 ns 2.36 4.19 ns 2.74

Adjusted R2 (p-value) 0.79 (p< 0.001) 0.77 (p< 0.001)

a P< 0.05
b P< 0.001; ns = not significant. SE = Standard Error.
c Difference between fine and medium soil textures.
d Difference between fine and coarse soil textures. Also note that the

difference between the coarse and medium soil textures (data not

shown) was found not statistically significant in both datasets.

zero to prevent N mining of the soil. Therefore the
environmental N target range used in this study is
0–48.0 kg ha−1.

It appears challenging to manage N in rain-fed
agriculture systems with an N surplus lower than
48.0 kg ha−1. Analysis of the cumulative distribution
of N surplus (figure 3(b)) indicates that 42% of values
in the dynamic dataset are within the 0–48.0 kg ha−1

target range, a threefold increase compared with the
static case where only 14% of the cases are within this
range. Applying dynamic N management allows for a
statistically significant (p< 0.0001) reduction inbothN
surplus and N losses, with mean values of 61.0 kg ha−1

(36% reduction) and 9.9 kg ha−1/Mg ha−1 yield (11%
reduction) in N surplus and N losses, respectively.
Zhang et al (2015) have translated the ‘safe’ plane-
tary boundary for N (Steffen et al 2015) into a globally
averaged N balance compatible with a boundary of 39-
to-78 kg ha−1. Using the upper limit of this range as
a sustainable N surplus target (dashed line in figure
3(b)) includes 69% of the trials in the dynamic dataset,
compared with 41% of the cases of the trials in the
static dataset. In any case, a dynamic approach enables
a reduction in the gap between the achievable N surplus
values and the designated target.

Wedonot suggest, however, that anNsurplus value
of 48 kg ha−1 should be a uniform target used to man-
age N across all production environments. While this N
surplus value emerges as a threshold for N losses in our
data, there might be situations where higher N surplus
is needed to maintain profitability, possibly necessitat-
ing higher environmental N losses. This value may vary
based on local climate, crop potential yield, soil tex-
ture, soil organic matter, and other factors. Identifying
such local N surplus targets is beyond the scope of this
paper.

3.3. Factors affecting N surplus under dynamic and
static N management approaches
To better understand the factors that affect N sur-
plus and identify approaches to reducing it, multiple

regression analysis using different predictors was per-
formed. The static and dynamic datasets were analyzed
separately. Five predictors where chosen: (i) total N
applied; (ii) annual rainfall; (iii) soil texture class
(coarse, medium or fine; see appendix 6 for classifica-
tion table); (iv) the ratio of N applied during in-season
sidedress to the total N applied (SDratio = SD N/Total
N); and (v) soil organic matter.

The predictors showed little multicollinearity when
tested using variance inflation factors (GVIF< 1.9;
(Fox andMonette 1992,RpackageCAR;Fox andWeis-
berg 2011)). The total N applied was found to be a
significant predictor of N surplus for both the static
and dynamic datasets. The positive relation between
total N applied and N surplus is expected from equa-
tions (1) and (3), and is evident in figures 4(a) and
(b): excessive N application and high N surplus was
associated with trials where manure was applied before
the growing season. In the static dataset, a second sig-
nificant predictor of N surplus was soil texture (figure
4(c)). N surplus is highest for medium textured soils,
although there was large variability in N surplus values
in each texture class. For the dynamic dataset, a signif-
icant second predictor is SDratio (figure 4(d)). Results
suggest that manure applications outside the growing
season typically lead to high N surplus and low SDratio
values, corroborating that a mismatch between timing
of N application and crop N needs increases N losses
(Robertson and Vitousek 2009). As noted previously,
USDA data (USDA ERS 2010) suggests that only 32%
of US maize growers apply fertilizer N during the grow-
ing season, and the rest use large fall or spring preplant
applications. In a multi-year simulation study involv-
ing 19 Midwest locations, split applications where the
bulk of N is applied within the growing season required
on average 50% and 40% less N than fall and spring
preplant N applications, respectively (McLellan et al
2018). Shifting from applying most N fertilizer and
manure before planting to applying within the growing
season is expected to better synchronize N availability
and crop N needs and reduce N surplus. Importantly,
this shift enables the use of dynamic N management
tools to adjust N rates according to the location-specific
seasonal conditions, and facilitate further reduction of
N surplus to reach the environmental targets.

Figure 3(b) suggests that even with in-season N
management using Adapt-N, 58% of the N surplus
values are outside the target N surplus range of 0–
48 kg ha−1. To further explore the role of SDratio on
N surplus in our datasets, figure 5 presents the effect
of two levels of SDratio within our datasets—SDratio
<0.5 and SDratio >0.5—on the cumulative distribu-
tion of N surplus. Under the dynamic N management
approach, shifting to a higher SD ratio nearly doubled
the fraction of values within the target 0–48 kg ha−1 N
surplus range from 27% to 51%. However, for the static
dataset, shifting to higher values for SDratio only had
a minor effect on N surplus, increasing from 12% to
15% the percentage of trials within the target N surplus
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Figure 4. N surplus versus total N applied for the dynamic (a) and static (b) datasets, and the effect of soil texture on N surplus for
the static dataset (c); red points and black lines represent the mean and median N surplus values in each texture group, respectively).
Panel (d) presents the effect of the ratio of side-dress N fertilizer to total fertilizer (SDratio) on N surplus in the dynamic dataset.

Figure 5. Cumulative distribution of N surplus values for two levels of the ratio of side-dress N fertilizer to total fertilizer (SDratio) for
the dynamic and static datasets. The shaded area is the N surplus range from 0–48 kg ha−1. The dashed black line is the 78 kg ha−1 N
surplus limit from the literature (Zhang et al 2015).

range. Applying the upper value of the N surplus range
suggested by Zhang et al (2015) for sustainable pro-
duction (78 kg ha−1) lead to inclusion of 88% of the
dynamic results with SDratio higher than 0.5, but only
45% for the static results. Supported by the lack of
significance of the SDratio for the static dataset in the
regression analysis, these results suggest that increasing
the amount of N applied within the growing sea-
son without dynamically adjusting the rate will only
marginally contribute to sustainable N surplus limits.

4. Conclusions

We evaluated the effects of dynamic vs. static N man-
agement approaches and the relationship between
N-surplus and environmental losses from multi-year
on-farm trials (n = 127) conducted in the Midwest,
Northeast, and Mid-Atlantic US using PNM model
simulations. The dynamic approach allowed a sig-
nificant reduction in N application rate (32%) and
N surplus (36%), without reducing yield, which led
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to significantly lower yield-scaled N losses (11%).
Losses increased linearly with N surplus values above
∼48 kg ha−1. N surplus was affected by the rate of N
application, soil texture, and the fraction of total N
applied during the growing season. Dynamic tools can
account for these factors and reduce the gap between
environmental N surplus targets and N surplus val-
ues achievable by growers, based on local conditions
such as climate, potential yield, soil texture, and prior
management. Future environmental policy that aims
at using N surplus as a sustainability performance
indicator should take into account both the tempo-
ral and the spatial variability of achievable N surplus
values at the field scale. Dynamic N management tools
allow for an overall reduction in N application and
losses without reducing yield, thus offering multiple
sustainability benefits. Further reduction in N sur-
plus and concomitant reductions in N losses could
be achieved by using such tools with slow-release
fertilizers, better adjustment of pre-plant fertilizer
rates, and reducing N rate to maintain profitability
rather than yield.
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