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Abstract 

In order to support the growing global population, it is necessary to increase food 

production efficiency and at the same time reduce its negative environmental impacts. 

This can be achieved by integrating diverse strategies from different scientific disciplines. 

As agriculture is becoming more data-driven by the use of technologies such as the 

Internet of Things, the efficiency in agricultural operations can be optimised in a 

sustainable manner. Some field operations, such as harvesting, are more complex and 

have higher potential for improvement than others, as they involve multiple and diverse 

vehicles with capacity constraints that require coordination. This can be achieved by 

optimised route planning, which is a combinatorial optimisation problem. Several studies 

have proposed different approaches to solve the problem. However, these studies have 

mainly a theoretical computer science perspective and lack the system perspective that 

covers the practical implementation and applications of optimised route planning in all 

field operations, being harvesting an important example to focus on. This requires an 

interdisciplinary approach, which is the aim of this Ph.D. project. 

The research of this Ph.D. study examined how Internet of Things technologies are 

applied in arable farming in general, and in particular in optimised route planning. The 

technology perspective of the reviewing process provided the necessary knowledge to 

address the physical implementation of a harvest fleet route planning tool that aims to 

minimise the total harvest time. From the environmental point of view, the risk of soil 

compaction resulting from vehicle traffic during harvest operations was assessed by 

comparing recorded vehicle data with the optimised solution of the harvest fleet route 

planning system. The results showed a reduction in traffic, which demonstrates that these 

optimisation tools can be part of the soil compaction mitigation strategy of a farm. And 

from the economic perspective, the optimised route planner of an autonomous field robot 

was employed to evaluate the economic consequences of altering the route in selective 

harvesting. The results presented different scenarios where selective harvest was not 

economically profitable. The results also identified some cases where selective harvest 

has the potential to become profitable depending on grain price differences and 

operational costs. In conclusion, these different perspectives to harvest fleet route 

planning showed the necessity of assessing future implementation and potential 

applications through interdisciplinarity. 
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Sammenfatning 

For at støtte klodens voksende befolkning er det nødvendigt at øge fødevareproduktions 

effektivitet og samtidig formindske dens negative miljøindvirkninger. Dette kan opnås 

ved at integrere diverse strategier fra forskellige videnskabelige discipliner. Da landbrug 

bliver mere data drevet takket være brugen af teknologier såsom ’Internet of Things’, kan 

effektiviteten af landbrugsoperationer blive optimeret på en bæredygtig måde. Nogle 

markoperationer, f.eks. høst, er mere komplekse og har større forbedringspotentiale end 

andre, fordi de involverer flere forskellige maskiner med kapacitetsbegrænsninger, som 

kræver koordinering. Dette kan opnås ved at bruge optimeret ruteplanlægning, som er et 

problem i kombinatorisk optimering. Adskillige studier har forslået forskellige 

fremgangsmåder for at løse problemet. Alligevel har disse studier hovedsageligt et 

teoretisk datalogisk perspektiv og mangler systemets perspektiv, som dækker 

implementering og anvendelserne af optimeret ruteplanlægning i alle markoperationer, 

hvori høst afgør et vigtigt eksempel at sætte fokus på. Dette kræver en tværfaglig 

fremgangsmåde, som er målet af dette Ph.d.-projekt. 

Forskningen i dette Ph.d.-studie undersøgte hvordan ’Internet of Things’ teknologier er 

anvendt i markbrug generelt, og i særdeleshed i optimeret ruteplanlægning. 

Teknologiens perspektiv i gennemgangsprocessen skaffede den nødvendige viden til at 

adressere den fysiske implementering af et høst maskinflåde ruteplanlægningssystem, 

som sigter mod at minimere samlet høsttid. Fra et miljømæssigt synspunkt blev 

jordpakningsrisici fra tung trafik i marken under høst vurderet ved at sammenligne 

optaget maskindata med den optimerede løsning fra høst maskinflåde 

ruteplanlægningssystemet. Resultaterne viste en reduktion af trafik, som beviser at disse 

optimerede ruteplanlægningsværktøjer kan være en del af gårdens 

jordpakningsforebyggende strategier. Og fra det økonomiske perspektiv, blev en 

optimeret ruteplanlægger fra en selvkørende markrobot brugt for at vurdere de 

økonomiske konsekvenser af ruteændringer i selektiv høst. Resultaterne fremlagde 

forskellige scenarier hvor selektiv høst ikke var økonomisk gavnlig. Resultaterne viste 

også nogle tilfælde hvor selektiv høst har potentiale for at blive økonomisk gavnlig, 

afhængig af korn prisforskel og driftsomkostninger. Som konklusion, viste disse 

forskellige perspektiver af høst maskinflåde ruteplanlægning nødvendigheden af at 

vurdere fremtidig implementering og potentielle applikationer ved hjælp af 

tværfaglighed. 
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Preface 

This Ph.D. dissertation is the outcome of the collaboration between industry and 

academia as part of the Industrial Ph.D. programme at Aarhus University, Department of 

Electrical and Computer Engineering - Communication, Control and Automation. The 

project was partly funded by the Innovation Fund Denmark within the project Future 

Cropping – Intelligent Harvest; by the European Union’s Horizon 2020 research and 

innovation programme under grant agreement no. 731884, Internet of Food and Farm 

(IoF2020) – Farm Machine Interoperability, and by the research and innovation 

programme under grant agreement no. 818182, SmartAgriHubs – Valued Grain Chain. 

The Ph.D. dissertation is structured as a collection of manuscripts organised into chapters 

following an interdisciplinary approach to optimised route planning in harvest 

operations. These manuscripts resulted in scientific papers in diverse scientific journals 

and conference proceedings. An overview of the publications can be found at the end of 

the introduction. The dissertation starts with a review of the state-of-the-art of optimised 

route planning in general and in harvest operations in particular. From the reviewing 

process some research gaps were identified. These define the objectives of the Ph.D. 

project. Within the interdisciplinary approach, chapter 2 and 3 address the technological 

perspective of the Internet of Things and its integration and implementation on harvest 

fleet route planning systems. Chapter 4 assesses the environmental influence of 

optimised route planning in harvest operations on the risk of soil compaction. Chapter 5 

focuses on the economic aspects of route planning in different selective harvesting 

scenarios. And chapters 6 and 7 discuss, put in perspective and draw conclusions on the 

work done during the Ph.D. programme. 

Andrés Villa-Henriksen, July 2021 
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Chapter 1 Introduction 

The global human population growth along with increasing consumption levels per-

person, are degrading the environment worldwide, depleting its natural resources, as 

well as challenging the global food supply (Godfray et al., 2010; Tilman et al., 2011; Crist, 

Mora and Engelman, 2017). Furthermore, these challenges are exacerbated by climate 

change, which makes food production unforeseeable and as a consequence less reliable. 

Increasing the efficiency in food production systems while reducing the negative 

environmental impacts associated with agriculture can be achieved by multifaceted 

strategies from different fields of study. One of these strategies is data-driven agriculture 

(Tilman et al., 2002; Sørensen et al., 2010; Day, 2011; Foley et al., 2011; Wolfert et al., 

2017), which by the appropriate use of its technologies can improve the efficiency in 

agriculture from different fronts. Improving the efficiency in agricultural operations 

targets also the economic aspect, which is essential for its adoption among modern 

agricultural producers (Pierpaoli et al., 2013). One of the data-driven agricultural 

strategies to improve the efficiency in agricultural operations is optimised route planning 

and its application in harvest operations (Bochtis, Sørensen and Busato, 2014). 

In the same manner there are many sides to why there is increased demand in food 

supply, there are also many different solutions that cannot solve the problem isolated. 

Furthermore, as agriculture is an interdisciplinary field, these solutions need to be 

addressed from an interdisciplinary approach too. Improving the efficiency of 

agricultural operations by optimised route planning cannot be only covered by the 

theoretical computer science point of view, but should be connected with perspectives 

from across different disciplinary boundaries. Starting from the combinatorial 

optimisation problem, its implementation and application in harvesting operations needs 

to be addressed from different disciplines, so that the apparent contradictory goals of 

improving agricultural efficiency and reducing environmental impact can be creatively 

covered. 

1.1 Background 

There is potentially high efficiency gains in the coordination and route optimisation of a 

fleet of agricultural vehicles in collaborative operations such as harvesting (Moysiadis et 

al., 2020; Nilsson and Zhou, 2020). The aim for efficiency is also encouraged by the 

reduced workability timeframes farm managers have to complete different operations 

(Edwards et al., 2015a; Seyyedhasani and Dvorak, 2017). Besides increasing operational 

efficiency, route planning in harvest operations can have other concrete goals in the 

optimisation, e.g. reducing the risk for soil compaction (Bochtis, Sørensen and Green, 

2012). Harvest operations involve multiple heterogeneous machines with capacity 
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constraints that need to collaborate in a field in a coordinated manner. Optimising the 

route planning in these operations is not without challenges and is essential for the 

employment of robotics and autonomous agricultural vehicles (Kayacan et al., 2015; 

Bechar and Vigneault, 2016; Ren and Martynenko, 2018; Moysiadis et al., 2020; Villa-

Henriksen, Edwards, et al., 2020; Araújo et al., 2021). Nonetheless, several studies have 

proposed specific solutions that are covered in this chapter and conform the background 

for the research presented in this Ph.D. dissertation. 

1.1.1 Vehicle routing problem in agricultural operations 

The VRP and its variations have provided optimised planning solutions for vehicle fleets 

in many diverse applications, e.g. transportation logistics, public transport or sales 

routing (Golden, Assad and Wasil, 2002). VRP, a generalised version of the classic 

travelling salesman problem (TSP), aims to find the optimal route or set of routes to be 

followed by a fleet of vehicles in order to visit a set of spatially dispersed points. This 

challenging combinatorial optimisation problem was firstly described in a real-world 

application by Dantzig & Ramser (1959). Later, new approaches were presented that 

instead of aiming for a globally optimal solution, sought for solutions that would 

approximate to the globally optimal in a reduced amount of time, e.g. by a greedy heuristic 

algorithm (Clarke and Wright, 1964). Depending on the constraints that can be added to 

the VRP, e.g. route length, time windows or capacity constraints, different variants have 

been described. These respond to the necessities of the different applications of VRP in 

practice. The approaches to solve these variants are also very diverse ranging from exact 

methods, such as branch-and-bound and branch-and-cut algorithms; to classical heuristic 

methods; and more recently meta-heuristic methods, such as Simulated and 

Deterministic Annealing, Tabu Search, Genetic Algorithms, Ant Systems, or Neural 

Networks (Toth and Vigo, 2002). The metaheuristic methods are of special interest as 

they are applicable to large numbers of problem instances and are more robust, in the 

sense that they can be more easily extended to account for the diverse constraints found 

in real-life applications. 

Even though all field operations in arable farming involve vehicles, it is relatively recent 

that VRP has been applied to agricultural field operations (Bochtis and Sørensen, 2009; 

Oksanen and Visala, 2009). The main challenge of VRP for field operations is that they are 

an NP-hard problem (Oksanen and Visala, 2009). NP stands for non-deterministic 

polynomial time and hard characterises that the problem cannot be solved in polynomial 

time, which in practice means that the optimal solution is unreachable, and require 

therefore methods that approximate to the globally optimal solution in a reasonable 

amount of time, e.g. meta-heuristic methods (Toth and Vigo, 2002). Additionally, the 

diversity of field operations requires adapted methods for specifically the type of task to 

perform in the field. Some more simple operations require a single vehicle to cover the 

whole field with trafficability constraints, e.g. tillage, or mowing, while others more 

complex need to coordinate a fleet of vehicles with different functions and capacities, e.g. 

grain harvesting. Another aspect to the complexity of applying VRP in agricultural field 
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operations is how the diversity of fields and operations can be represented as a mesh of 

nodes to be visited, with in-field attributes (rows and headlands), and inter-field 

configurations (gates, depots and connecting road networks) (Bochtis and Sørensen, 

2009, 2010; Jensen et al., 2012; Zhou et al., 2014). Whereas some operations can be 

simplified by representing each row with two nodes, one on each end, others like 

harvesting require different representations for the offloading points or the out-of-field 

depot (Figure 1). Consequently, it is just over a decade that researchers started studying 

VRP solutions in an arable farming context. 

 

  

Figure 1. Correspondence between agricultural field operations and different VRP variants. Left 

sowing (from Bochtis & Sørensen, 2009) and right harvesting (from Bochtis & Sørensen, 2010). 

 

A simpler type of agricultural field operation in regard to VRP is defined as neutral 

material flow (NMF) field operations. In this type of operations there is no flow of 

material into or out of the field, e.g. mowing, tillage or hay raking, in contrast with 

operations where refilling or emptying is necessary. Input material flow (IMF) operations 

are those that require a material to be transported into and distributed in the field, e.g. 

sowing, fertilising or spraying. And output material flow (OMF) operations are those that 

transport material out of the field, e.g. harvesting or hay bale collection (Bochtis and 

Sørensen, 2009). IMF and OMF operations can have different material demands, as they 

can be known beforehand, e.g. sowing with predefined seeds per area, estimated, e.g. 

harvest with an expected yield distribution, or completely unknown, e.g. variable-rate 

fertilisation based on on-the-go sensor data. Regarding VRP, IMF and OMF operations 

have capacity constraints and are also called capacitated field operations (Jensen et al., 

2015; Conesa-Muñoz, Pajares and Ribeiro, 2016). 
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Examples of optimised route planning for NMF operations have shown reductions in non-

working distances between of up to 58.7% (Bochtis et al., 2013) and total energy 

consumption savings from 3 up to 8% (Rodias et al., 2017) by the use of B-patterns, which 

optimise the sequence of the field work tracks. A prototype tool for NMF was evaluated 

with recorded mowing operations and saved up to 18.4% of total travelled in-field 

distance, with a total distance saved of 7.5% for the 12 fields used in the comparison 

(Edwards et al., 2017). Regarding IMF operations, a study about optimisation in 

fertilisation showed savings in non-productive distance between 15.7 and 43.5% and 

from 5.8 and 11.8% in total travelled distance (Jensen, Bochtis and Sørensen, 2015) and 

. Finally, OMF operations, such as harvesting operations, has attracted substantial 

attention in research because it involves a fleet of heterogeneous machines that influence 

and constrain each other spatio-temporally (Scheuren et al., 2013). Examples showed 

time reductions of 31.64% for sugar cane harvest (Santoro, Soler and Cherri, 2017) or 

reduction in non-working distance ranging from 19.3 to 42.1% (Bakhtiari et al., 2013). 

More on harvesting operations is described in the next subsection.  

Besides VRP applied to optimise in-field operations, optimisation algorithms have been 

also applied for scheduling different types of field operations, e.g. scheduling farm-to-

farm harvesting operations based on the TSP (Basnet, Foulds and Wilson, 2006; Plessen, 

2019), scheduling farm operations as a VRP problem with time windows (Bochtis and 

Sørensen, 2010), scheduling a fleet of machinery for multiple field operations with 

capacity constraints (Orfanou et al., 2013; He and Li, 2019), or optimising the scheduling 

of sequential field operations using tabu-search algorithms (Edwards et al., 2015a). 

  

Figure 2. Example from Edwards (2015): harvesting operation transformed into VRP instance, and 

its solution into a work plan. 

 

1.1.2 Harvest fleet route planning 

The extensive research interest in route optimisation in harvesting operations has led to 

many different approaches and VRP variants to optimise this type of operation. The 

potential benefits of reducing the in-field travelled distance that directly affect 

production costs and soil compaction problems, combined with the complexity of 
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optimising the route of a fleet of heterogeneous capacitated vehicles, are driving the 

increasing research attention (Bochtis and Sørensen, 2010; Jensen, Bochtis and Sørensen, 

2015; Moysiadis et al., 2020; Nilsson and Zhou, 2020). 

Harvesting operations can be addressed by the VRP with trafficability, time windows and 

capacity constraints (Figure 2) (Bochtis and Sørensen, 2010; Jensen et al., 2015). The 

trafficability constraints are defined by the tracks that cannot be driven on due to for 

example non-harvested crop, conflicting directions of different vehicles or in some cases 

due to fields with controlled traffic farming systems. The capacity constraints are caused 

by the load of material that a vehicle is able to carry. And the time windows constraints 

relate to operations with heterogeneous cooperative machines. The nodes defined by the 

customer in a VRP context are determined by the unloading events where a service unit, 

i.e. a grain cart, is servicing a primary unit, i.e. the harvester. These can be in the 

harvesting case static or dynamic depending on whether the unloading event occurs on-

the-go or is stationary (Figure 3). In contrast, different node representations are needed 

for harvesting operations in plantations with equilateral triangular patterns (Hsion et al., 

2021). 

 

Figure 3. Examples of unloading events in harvesting operations (from (Bochtis and Sørensen, 

2010): CTF on-the-go unloading (a), CTF stationary unloading (b) and non-CTF on-the-go 

unloading (c). 

The optimisation of the route planning can have many different approaches (Table 1) as 

well as different minimisation objectives. While many studies aim to minimise non-

working distance (Bakhtiari et al., 2013; Bochtis et al., 2013; Conesa-Muñoz, Pajares and 

Ribeiro, 2016; Utamima, Reiners and Ansaripoor, 2019), others aim to minimise 

operational time (Cerdeira-pena, Carpente and Amiama, 2017), harvester manoeuvring 

time (Santoro, Soler and Cherri, 2017), energy use (Rodias et al., 2017) or the risk of soil 

compaction (Bochtis, Sørensen and Green, 2012; Gorter, 2019).  
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Table 1. Examples of optimisation route planning approaches for harvesting operations. 
Metaheuristic method Minimisation 

objective 
Reference 

Tabu search + Simulated annealing 
algorithms 

Operational time (Cerdeira-pena, Carpente and 
Amiama, 2017) 

Ant colony optimisation 
Non-working 
distance 

(Bakhtiari et al., 2013) 
(Zhou et al., 2014) 

Evolutionary hybrid neighbourhood 
search 

Non-working 
distance 

(Utamima, Reiners and Ansaripoor, 
2019) 

Simulated annealing algorithm (Mix-
opt.) 

Non-working 
distance 

(Conesa-Muñoz, Pajares and Ribeiro, 
2016) 

Tabu search 
Operational time (Seyyedhasani and Dvorak, 2017) 
Risk of soil 
compaction 

(Gorter, 2019) 

Most of the studies found in literature do not take into consideration a central aspect for 

real-world harvesting scenarios, which is dynamic rerouting (Bochtis and Sørensen, 

2010; Scheuren et al., 2013; Seyyedhasani and Dvorak, 2018). Dynamic rerouting or 

recalculation of the planned route is necessary when the execution deviates from the 

original solution. These unavoidable deviations can be for example caused by unexpected 

yield variations that change the unloading point. When comparing with static VRP, 

dynamic VRP is in need of new mathematical representations as the vehicles involved in 

the operation are already moving, and parts of the route have already been completed 

(Seyyedhasani and Dvorak, 2018). 

Even though many optimisation solutions have been successfully applied to harvesting 

operations, to the author’s knowledge no studies have looked into its implementation in 

a real-world scenario, where the planned route is presented to the vehicle operators and 

dynamically adapts to the deviations from the proposed plan. Nonetheless, a decision 

support tool for operation planning of field operations has been presented, where routes 

are optimised prior operation for aiding the decision making of the farm manager 

(Nilsson and Zhou, 2020). An essential part of a dynamic harvest fleet route planning 

system is vehicle and crop monitoring, as position data and tank capacities are 

fundamental variables in the route optimisation. Remote monitoring of harvesting 

operations in near real-time has been achieved by employing connected devices to the 

internet, where GNSS (Global Navigation Satellite System) position data and CAN 

(Controller Area Network) bus data are retrieved and communicated through the 

internet (Pfeiffer and Blank, 2015; Oksanen, Linkolehto and Seilonen, 2016). 

As it has been appreciated in the studies collected in this Ph.D. project, the main focus of 

harvest fleet route planning systems has been operation efficiency by minimising 

operational time or travelled distance. The potential environmental benefits that can be 

achieved by employing such systems has only been slightly addressed. Rodias et al. 

(2017) optimised the in-field route planning of harvesting operations by minimising the 

total energy consumption up to 8%. With another point of view, a decision support 

system (DSS) that aims to minimise the risk of soil compaction was developed with the 

objective of planning the route based on the vehicle load and a potential risk indicator 

map, reducing the risk factor up to 61% (Bochtis, Sørensen and Green, 2012). The same 
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goal but with a different approach achieved a reduction of up to 10.5% of traversed 

weight metres (Gorter, 2019). Moreover, the use of field maps can add new approaches 

to in-field route planning and optimisation, which have not yet been addressed. For 

example, selective harvesting, which consists on harvesting separately different field 

areas based on a crop quality indicator. Some approaches have been presented where the 

field is divided into management zones that are meant to be harvested selectively (Tozer 

and Isbister, 2007; Meyer-Aurich et al., 2008; Whetton, Waine and Mouazen, 2018); 

however, these studies do not present how this type of harvest is achieved in practice. 

The route planning challenges that are linked to selective harvest have not been covered 

yet. 

1.1.3 Interdisciplinary approach 

Generally, VRP in harvest fleet route planning has been only addressed by the theoretical 

computer science point of view. This field of science has set the cornerstone for the 

implementation and future potential applications that need to be addressed in 

combination with other fields of research in an interdisciplinary manner (see Figure 4). 

The different disciplinary perspectives and insights can provide a deeper understanding 

to solve the specific problem (Macleod and Nagatsu, 2018). This means that this plurality 

of perceptions and goals associated with interdisciplinarity is expected to have positive 

impacts on the technical feasibility of the research. This has been confirmed by the strong 

correlation found between interdisciplinary research and the engagement in university-

industry interactions (D’Este et al., 2019).  

Agriculture is without doubts an interdisciplinary field, which has inevitable 

environmental problems that are causally entwined (Koleva and Toteva-Lyutova, 2018; 

Macleod and Nagatsu, 2018). Interdisciplinary approaches are then also required for 

studying the continuous and complex problems associated with agricultural production 

(Vellema, Struik and Slingerland, 2020). Consequently, the apparent paradox of 

increasing agricultural produce without degrading more the climate and natural 

environment can only be addressed from interdisciplinarity. VRP applied to harvesting 

operations can be part of the solution but needs to be addressed with integrated 

perspectives from different disciplines in order to study the challenges of its practical 

implementation in the real-world, its effects on the environment as well as its potential 

applications. Furthermore, a system perspective is required in the implementation and 

integration of innovative technologies, such as optimised route planning. Such new 

technologies affect the whole system and change how the system is integrated and 

instantiated at different levels from diverse perspectives (Sundmaeker et al., 2016). The 

implementation and application of harvest fleet route planning is not a mere technology 

transition but a system transition that involves the combination of the innovation model 

with the technological requirements and end-user applicability. 
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Figure 4. Subsystems of a harvest fleet route planning system and the specialities involved in its 

implementation. 

 

 

Excluding the physical vehicles, hardware and sensors involved, the implementation of a 

harvest fleet route planning tool requires diverse specialities from different scientific 

disciplines to become a complete system (Figure 4). In most literature reviewed, these 

models have only focused on the optimisation algorithms, which are developed by 

mathematical programmer and theoretical computer science specialities. However, in 

practice more disciplines need to address in an integrated manner the missing 

technological aspects of its implementation, as well as the analytical aspects of its 

applications. These have not been fully addressed in literature yet. For the 

implementation of the tool, the architecture of the IoT system and its user interfaces are 

to be covered by software architecture and software application programming 

specialities respectively. The data retrieved and generated needs to be communicated 
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wirelessly and processed and stored in a server, requiring specific specialities, such as 

information science and information and communication technologies. Additionally, the 

user experience is studied by human-computer interaction in order to become smooth 

and user-friendly. And the whole tool needs to be supervised by agronomy specialities in 

order to address the feasibility of its applications in field operations. The economical, 

marketing, advertising or adoption aspects have been deliberately omitted for 

simplification reasons. 

The diversity of applications that a harvest fleet planning tool can have, drives the 

selection of optimisation approach implemented (see Table 1). The economical 

perspective aims to reduce operational costs by minimising travelled distances, fuel 

consumption or operational time, while the environmental point of view aims to reduce 

risk of soil compaction or total energy usage (Figure 5). From a different angle, the 

technological perspective focuses on the integration and practical implementation of 

such a tool. And the agronomic perspective centres its attention on the diversity of 

applications and uses of the tool (Figure 5). Additional applications can have alternative 

purposes such as selective harvesting that aims to increase the economic return of the 

farm and can be used to improve the productive capacity of a field. Finally, as robotics in 

agriculture is becoming a reality, optimised route planning tools are essential to navigate 

autonomous vehicles co-ordinately and efficiently (Kayacan et al., 2015; Bechar and 

Vigneault, 2016; Ren and Martynenko, 2018; Moysiadis et al., 2020; Villa-Henriksen, 

Edwards, et al., 2020; Araújo et al., 2021). 

 

 

Figure 5. Confluence of perspectives of a harvest fleet planning tool. 

1.2 Research gaps 

From the information reviewed regarding harvest fleet route planning, several key 

challenges and knowledge gaps have been identified and addressed on this Ph.D. project: 
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• While the use of IoT technologies applied to agriculture have been widely covered, 

limited focus on arable farming and integration with optimised route planning has 

been made. 

• Until now the main focus in harvest fleet route planning has been the development 

of the inherent optimisation algorithms, but there is a lack of technical 

descriptions of the physical implementation of the system. 

• Even though some studies have pointed out the potential of reducing soil 

compaction of a harvest fleet route planning tool that aims to minimise the 

operational time, no studies have yet evaluated this assumption. 

• The challenges of planning the route of selective harvest have not been addressed 

in literature, and the additional costs of the alternative route have not been 

evaluated. 

In general, the interdisciplinary approach to harvest fleet route planning is missing. 

 

1.3 Objectives 

The main objective of this Ph.D. project was to address harvest fleet route planning from 

an interdisciplinary perspective by focusing on the implementation and applications of 

the system. 

The more specific objectives aim to answer the list of key challenges and knowledge gaps 

already identified. The knowledge gaps are listed in the previous subsection and the 

objectives are outlined in Figure 6. The first objective was to review how IoT technologies 

are applied in arable farming and optimised route planning. This review provided the 

necessary knowledge to focus on the second objective, which was to address the 

implementation of a harvest fleet route planning tool that minimises harvest time. The 

third objective was to apply and evaluate the effects of the harvest fleet route planning 

system in reducing the risk of soil compaction. And the fourth and final objective was to 

apply and evaluate an optimised route planning tool for autonomous robotic selective 

harvesting based on protein content. 
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Figure 6. Research approach and thesis outline 

 

1.4 Summary of main contributions 

This Ph.D. dissertation is the result of the research funded by Agro Intelligence ApS. 

(AgroIntelli) and in collaboration with the Department of Engineering of Aarhus 

University. The project of the industrial Ph.D. programme has contributed to the field of 

harvest fleet route planning with an interdisciplinary approach that covers some 

research gaps between the theoretical computer science point of view, and the necessary 

considerations for the implementation of the system as well as some of its potential 

applications (see Figure 6).  
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which one resulted in a published conference paper, one published journal review article 
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for Food and Agriculture) with the title ‘Sustainable soil management’. An overview of 

the publications, their highlights, and how they have been included in the Ph.D. 
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• The role of Internet of Things in arable farming is reviewed. 

• Internet of Things is leading arable farming to become data-driven. 

• Implementation and application are described in depth. 

• Challenges, corresponding solutions and potentials are discussed 

thoroughly. 

• Attention to optimised route planning is included. 

• Internet-Based Harvest Fleet Logistic Optimisation. A published Agricultural 

Engineering (AgEng) Conference paper that composes Chapter 3. The main 

highlights are: 

• The IoT architecture of a harvest fleet route planning tool is described. 

• The data flow of the system is addressed. 

• The communication technologies implemented in the system is described. 

• Infield optimized route planning in harvesting operations for risk of soil compaction 

reduction. A published Soil Use and Management Journal article that composes 

Chapter 4. The main highlights are: 

• Route plans for a set of recorded fields are generated by using a harvest 

fleet route planning system. 

• The traffic of the recorded and optimised solutions is calculated. 

• The risk of soil compaction for recorded and optimised solutions is 

evaluated. 

• Evaluation of simulated grain quality-based selective harvest performed by an 

autonomous agricultural robot. A submitted article to the Agronomy Journal 

Special Issue "The Future of Agriculture: Towards Automation" that composes 

Chapter 5. The main highlights are: 

• A new approach to selective harvest is presented. 

• Harvest fleet route planning is applied to create the routes for selective 

harvest. 

• Different theoretical scenarios for selective and conventional harvest are 

generated. 

• The harvest efficiency and cost-benefit analysis of the system are evaluated 

for the different scenarios. 

• In-field traffic management. A published chapter in the DCA Report ‘Sustainable 

soil management’, which has been included in the Appendix. 

• The effects of in-field traffic management in agricultural operations are 

addressed. 

• The role of optimised route planning in sustainable soil management is 

described.  
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Chapter 2 Internet of Things in 
arable farming: 
Implementation, applications, 
challenges and potential 

 

Andrés Villa-Henriksena,b; Gareth T.C. Edwardsb; Liisa A. Pesonenc; Ole Greenb,d; 

Claus A.G. Sørensena 

a Aarhus University, Department of Electrical and Computer Engineering 
b Agro Intelligence ApS 
c Natural Resources Institute Finland (LUKE) 
d Aarhus University, Department of Agroecology 

(Biosystems Engineering 191 (2020), pp. 60-84.) 

 
Abstract 
The Internet of Things is allowing agriculture, here specifically 
arable farming, to become data-driven, leading to more timely and 
cost-effective production and management of farms, and at the 
same time reducing their environmental impact. This review is 
addressing an analytical survey of the current and potential 
application of Internet of Things in arable farming, where spatial 
data, highly varying environments, task diversity and mobile 
devices pose unique challenges to be overcome compared to other 
agricultural systems. The review contributes an overview of the 
state of the art of technologies deployed. It provides an outline of 
the current and potential applications, and discusses the challenges 
and possible solutions and implementations. Lastly, it presents 
some future directions for the Internet of Things in arable farming. 
Current issues such as smart phones, intelligent management of 
Wireless Sensor Networks, middleware platforms, integrated Farm 
Management Information Systems across the supply chain, or 
autonomous vehicles and robotics stand out because of their 
potential to lead arable farming to smart arable farming. During the 
implementation, different challenges are encountered, and here 
interoperability is a key major hurdle throughout all the layers in 
the architecture of an Internet of Things system, which can be 
addressed by shared standards and protocols. Challenges such as 
affordability, device power consumption, network latency, Big Data 
analysis, data privacy and security, among others, have been 
identified by the articles reviewed and are discussed in detail. 
Different solutions to all identified challenges are presented 
addressing technologies such as machine learning, middleware 
platforms, or intelligent data management. 
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2.1 Introduction 

The global population and its food consumption is growing alarmingly fast, while climate 

change effects are simultaneously complicating the challenge of ensuring food security in 

a sustainable manner (Godfray et al., 2010; Tilman et al., 2011). Data-driven agriculture 

is one of the main strategies and concepts proposed to efficiently increase the production 

while decreasing its environmental impact (Foley et al., 2011). Data-driven technologies 

in general are quickly advancing with the development of the Internet of Things (IoT), 

and may become an important part of the future of farming (Brewster et al., 2017; 

Jayaraman et al., 2016; Verdouw, 2016a; Wolfert et al., 2017). Smart Farming, also called 

Agriculture 4.0 or digital farming (CEMA, 2017), is developing beyond the modern 

concept of precision agriculture, which bases its management practices on spatial 

measurements largely thanks to Global Positioning System (GPS) signals. Smart farming 

bases its management tasks also on spatial data but is enhanced with context-awareness 

and is activated by real-time events, improving the performance of hitherto precision 

agriculture solutions (Sundmaeker et al., 2016; Wolfert et al., 2017). Additionally, Smart 

Farming usually incorporates intelligent services for applying and managing Information 

and Communication Technologies (ICT) in farming, and allows traverse integration 

throughout the whole agri-food chain in regards to food safety and traceability 

(Sundmaeker et al., 2016). IoT is therefore a key technology in smart farming since it 

ensures data flow between sensors and other devices, making it possible to add value to 

the obtained data by automatic processing, analysis and access, and this leads to a more 

timely and cost-effective production and management efforts on farms. Simultaneously, 

IoT enables the reduction of the inherit environmental impact by real-time reaction to 

alert events such as weed, pest or disease detection, weather or soil monitoring warnings, 

which allow for a reduction and adequate use of inputs such as agrochemicals or water. 

IoT eases documentation and supervision of different activities as well as the traceability 

of products, improving the environmental surveying and control in farms from the 

corresponding authorities. 

The IoT concept was introduced by Kevin Ashton in 1999 in relation to linking Radio-

Frequency Identification (RFID) for supply chains to the internet (Ashton, 2009), but has 

no official definition. It implies, however, the connection of a network of “things” to or 

through the internet without direct human intervention. “Things” can be any object with 

sensors and/or actuators that is uniquely addressable, interconnected and accessible 

through the world-wide computer network, i.e. the Internet. The application of IoT in 

agriculture is advantageous because of the possibility to monitor and control many 

different parameters in an interoperable, scalable and open context with an increasing 

use of heterogeneous automated components (Kamilaris et al., 2016), in addition to the 

inevitable requirement of traceability. As a result of IoT, agriculture is becoming data-

driven, i.e. making informed real-time decisions for managing the farm, reducing 

uncertainties and inefficiencies, and as a consequence reducing its environmental impact. 
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Figure 7. Number of publications per year retrieved from SCOPUS with the following searching 

criteria: (Internet of things OR IoT) AND (agriculture OR farming). 

The application of IoT in agriculture, also called Ag-IoT (Zhai, 2017), AIoT (Zou and Quan, 

2017), or IoF meaning Internet of Farming (Alahmadi et al., 2017) or Internet of Food and 

Farm (Sundmaeker et al., 2016; Verdouw et al., 2017), has received exponentially 

increasing attention in the scientific community (Figure 7). Even though the publications 

are mainly dominated by Asian scientists (Talavera et al., 2017; Verdouw, 2016a), in 

Europe several large scale international pilot projects, such as IoF2020 (Sundmaeker et 

al., 2016; Verdouw et al., 2017), AIOTI (Pérez-Freire and Brillouet, 2015), SmartAgriFood 

(Kaloxylos et al., 2012), SMART AKIS (Djelveh and Bisevac, 2016), or more recently 

SmartAgriHubs (Chatzikostas et al., 2019), are aiming to implement IoT technologies in 

the agricultural industry in Europe. Similar projects elsewhere include the Accelerating 

Precision Agriculture to Decision Agriculture (P2D) project in Australia (Zhang et al., 

2017), which complement additional major investments with the aim to help farmers 

convert to smart farming (Higgins et al., 2017; Pham & Stack, 2018). 

Several reviews have been done about IoT in agriculture in the relatively short time 

period where publications about the subject have emerged (Ray, 2017; Stočes et al., 2016; 

Talavera et al., 2017; Tzounis et al., 2017; Verdouw, 2016a). In addition, review papers 

have been published with a focus on specific subjects related to IoT applied in agriculture, 

such as Big Data (Kamilaris et al., 2017; Wolfert et al., 2017), modelling (O’Grady and 

O’Hare, 2017), Wireless Sensor Networks (WSN) (Jawad et al., 2017), food supply chain 

(Ramundo et al., 2016), Internet of Underground Things (Vuran et al., 2018), chemical 

wireless sensors (Kassal et al., 2018), or Farm Management Information Systems (FMIS) 

(Kaloxylos et al., 2012; Fountas et al., 2015). However, to the authors’ knowledge, no 

review exists focusing on arable farming, which has specific characteristics and 

challenges that differ from those in a controlled environment, i.e. greenhouses, or 
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permanent crops such as fruit orchards. Arable farming poses particular challenges due 

to: 

• much larger farm sizes, which affect the design of the sensor networks, the data 

processing, analysis and extrapolation of limited stationary sensor data, and the 

consequent decision making in regards of actuators, vehicle logistics, etc.; 

• the larger farm sizes also imply that spatial data has a central role in arable 

farming, affecting the data processing, decision making and precision machinery 

employed to address in-field variability not at plant level as in most permanent 

crops, but at subfield level with automatic recognition and actuation (Zude-Sasse 

et al., 2016); 

• higher use of mobile sensors and other devices on vehicles, which have specific 

challenges. While other cropping systems may also use sensors and devices on 

operating machinery, arable farming often requires a fleet of vehicles to operate 

co-ordinately. This creates issues especially regarding network infrastructure 

(Martínez et al., 2016), e.g. connectivity of the moving things to the cloud that rely 

mainly on mobile networks, or vehicle to implement communication, which 

implies real-time interoperability between machines and devices from different 

manufactures (Peets et al., 2012); 

• larger amounts of heterogeneous spatial data generated at different rates and 

from very disparate sources: stationary sensors, moving vehicles and implements, 

satellites, data from web services, etc., which need to be intelligently integrated; 

• highly varying and uncertain environmental conditions, as annual crops are more 

susceptible to weather changes and other external factors than permanent crops, 

which are more resilient mainly due to their deeper roots (Zude-Sasse et al., 

2016), or crops in controlled environments. This obligates the IoT system to 

handle both spatial and temporal data increasing the complexity of the data 

processing as well decisions based on the data collected. 

• more diverse types of field tasks per growing season in arable farming, from soil 

preparation and crop establishment, through highly varying plant nursing tasks, 

to coordinated harvest, which increase the complexity and also the risks. 

The IoT in agriculture is a fast-developing field, which can make reviews becoming 

obsolete quickly. This challenge can be overcome by focusing with a critical view on the 

general principles, main application areas and identify the limitations and challenges. 

Summarising, the aim of the paper is to provide an up to date novel analytical review of 

the role of IoT in arable farming, being the specific objectives the following: 

• Provide an overview of the current situation of IoT technologies deployed in 

arable farming. Focussing on the current use of communication technologies and 

protocols, the generation and analysis of data, and IoT architectures. 

• Outline the different applications and capabilities of IoT in arable farming. 

• Investigate the main challenges encountered by IoT enabling technologies applied 

to arable farming. 
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• Present key potential fields of application where IoT could be employed, as well 

as future directions of the current trends. 

The remaining part of this paper is structured as follows: Section 2 describes the 

methodology used in this review paper. Section 3 provides an overview of the state of the 

art of IoT technologies used in arable farming; Section 4 presents an outline of the current 

and potential IoT-based applications in arable farming; Section 5 discusses the challenges 

and solutions found in its implementation; and lastly, the review closes with a concluding 

Section 6 where future directions are summarised. 

2.2 Review methodology 

In order to address the specific objectives exposed above, the literature listing from the 

SCOPUS database of the last 11 years has been reviewed. More precisely, the timeframe 

investigated ranged from 1 January 2008 to 31 December 2018, selected as the whole 

period where any literature subjects about the subject turned up in the studied database. 

SCOPUS as a key peer-reviewed research literature database was selected as the primary 

literature source. The specific keywords used in the search criteria where: (Internet of 

Things OR IoT) AND (agriculture OR farming). To ease the searching process, the 

keywords needed to be present in at least the title, abstract, highlights or keywords. 

Additionally, the articles had to be published in English. 

Figure 8. Reviewing procedure tree diagram. 
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Articles concerning greenhouse, livestock or permanent crops were excluded from the 

survey, as were supply chain related articles. However, issues concerning traceability at 

farm level were included. 

The survey was performed in a systematic manner following three steps (see Figure 8): 

• Firstly, a list of 1193 articles was retrieved from the database according to the 

searching criteria mentioned above.  

• In the second step, by reading the titles any article that was clearly not related to 

arable farming was excluded, leaving a list of 293 articles.  

• In the last step, a second screening by reading the abstracts was made, where 

articles outside the focus of this review were omitted. After this step, 167 articles 

were studied in detail, from which 69 articles were considered relevant, 27 as 

partially relevant, while the rest were considered of little relevance. Relevance 

concerned mainly the connection of the article to the subject studied. The content 

of a relevant article addresses directly the application of an IoT technology in an 

arable farming scenario. A partially relevant article studies a certain IoT 

technology in agriculture in a broader sense. In the distinction made regarding 

little relevant articles included off-topic, lack of novelty, as well as non-peer-

reviewed articles that lacked scientific rigour, e.g. ambiguous information or 

absence of materials or methods description. 

The final 167 articles studied included: 77 journal papers, 88 conference papers and 4 

book chapters, of which 19 were review papers. The final list of articles was 

complemented with other publications that expanded on some of the IoT related subjects 

and technologies mentioned on the studied articles, and did not contain the specified 

keywords. These were found by a targeted search of specific subjects. Lastly, in each 

article of the final list there was given a special focus on the IoT technologies employed, 

the applications, the challenges encountered and, finally, on potential future perspectives.  

2.3 IoT implementation in arable farming 

IoT is recently gaining momentum in the farming industry as it can fulfil the urgent 

necessity for interoperability across brands, scalability and traceability (Kamilaris et al., 

2016). Different technologies are implemented as IoT is still evolving, adapting to the 

great diversity of uses. To cover the range of technologies, protocols, standards, etc. 

employed, this review is addressing the IoT layers in its architecture. Three layers 

normally describe the architecture of the IoT in the literature reviewed (Ferrández-

Pastor et al., 2018; Khattab et al., 2016; Köksal & Tekinerdogan, 2018; Na & Isaac, 2016; 

Tzounis et al., 2017; Verdouw, 2016a), though some authors divide it into more layers 

(Ferrández-Pastor et al., 2016; Ramundo et al., 2016; Ray, 2017; Talavera et al., 2017; 

Wang et al., 2014), depending on their definitions. More than three layers can especially 
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be relevant in IoT systems with edge or fog computing, where an edge/fog computing 

layer can be considered in between device and network layers (Ferrández-Pastor et al., 

2016). Even if the naming of the layers also varies depending on the author, there is 

nonetheless a general trend to divide the layers into device, network and application 

layers (Figure 9). Thus, this has been the adapted structure in this review. The device 

layer consists of the physical objects (things) that are capable of automatic identification, 

sensing or actuating, and connecting to the internet. The network layer communicates 

the data to a gateway (or proxy server) to the internet (cloud) by the use of 

communication protocols. And the application layer typically stores and facilitates access 

to the processed/analysed information to the end-user. 

 

Figure 9. IoT architecture represented by device, network and application layer, in which the 

middleware platform is not always present. 

The collected data experience diverse stages during its transition from sensors to cloud, 

interfaces, and occasionally actuators, which have considerable influence in the 

technologies applied in an IoT context. Six main stages regarding data flow have been 

identified in the literature reviewed: sensing/ perception, communication/ transport/ 

transfer, storage, processing, analytics, and actuation and display (Figure 10). The order 

of the stages is different depending on the IoT setup employed and the computing 

techniques used, e.g. fog and edge computing processes the data before communicating 

it to the cloud, an example of its application in precision farming can be found in 

Ferrández-Pastor et al. (2016); while cloud computing processes the data in the cloud, 

examples of this can be found in (Hernandez-Rojas et al., 2018; Na & Isaac, 2016). 

Nonetheless, sensing/perception is normally the first stage, where data is captured by 

sensors, then the data can follow different paths and does not necessarily go through all 

the steps listed. In summary, IoT data is identified to be gathered or generated through 

three main processes: machine generated, which come from sensing devices; process-

mediated, i.e. commercial data coming from business processes; and human-sourced, 

recorded by humans and digitalised later on (Balducci et al., 2018). These different 

sources have an influence on how to process, analyse and use the data in IoT solutions, 

which need to be taken into account in the overall data acquisition planning process. 
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Figure 10. Different agricultural data flows in arable farming. 

2.3.1 Device layer 

As mentioned above, the device layer consists of the physical objects (things) that are 

capable of automatic identification, sensing or actuating, and providing connection to the 

internet. Sensor devices measure and collect one or more parameters automatically and 

transmit the data wirelessly to the cloud. And, when the devices turn actuators, they 

generally, in turn, receive data from the cloud in order to activate or deactivate some 

mechanical component, e.g. a valve in an irrigation system. The device layer is also often 

called perception layer (Tzounis et al., 2017; Zou and Quan, 2017), sensing layer (Wang 

et al., 2014; Na and Isaac, 2016), or physical layer (Ramundo, Taisch and Terzi, 2016; 

Talavera et al., 2017). The devices are constituted by a transceiver, a microcontroller, an 

interfacing circuit and one or more sensors and/or actuators. The sensor measures a 

physical parameter, e.g. air temperature that is interpreted and transformed into an 

equivalent analogue signal, i.e. electric voltage or current, which is then converted by the 

interfacing circuit, i.e. Analogue-to-Digital Converter (ADC) into a corresponding digital 

format. Afterwards, the microcontroller, sometimes also in the form of microprocessors 

or single-board computers (Talavera et al., 2017), collects the data in digital format from 

one or more sensors through the ADC, and sends it to the transceiver, i.e. a wireless 

communication module, which communicates the data to a gateway. A comparison of 

microcontrollers and single-board computers used in IoT in agriculture can be found in 

Ray (2017). In the case of edge computing, the microcontroller or single-board computer 

processes the data from one or more sensors before communicating it, with the intention 

of, for example, reducing the amount of data to be transferred to the cloud and 

accelerating the data processing (Ferrández-Pastor et al., 2016; Sundmaeker et al., 2016). 

In fog computing the data is processed in the local area network level, i.e. in a fog node or 

IoT gateway (Ahmed et al., 2018; Ferrández-Pastor et al., 2018). In case of employing an 

actuator, the signal is received by the transceiver, communicated to the microcontroller, 

which is then converted to analogue signal by a Digital-to-Analogue Converter (DAC), i.e. 
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the interfacing circuit, or to a digital signal by a Digital-to-Digital Converter, and finally 

interpreted by the actuator, that acts in accordance to the signal received. 

In arable farming, when agricultural machinery data is used, i.e. data from sensors and 

devices mounted on tractors and other agricultural machinery, the data in digital format 

is normally collected and accessible through the Controller Area Network (CAN) bus in 

the machine, although in some cases some data is accessible through other ports 

(Oksanen et al., 2016; Peets et al., 2012). Machine and operator performance information 

is accessible through the Machine and Implement Control System (MICS) of the machine, 

which can also be accessed through the CAN bus data. MICS data are used to allow 

machinery operators and farm managers to monitor and potentially improve the 

efficiency of their machines, by employing e.g. smart alerts or recommendation systems 

(Pfeiffer and Blank, 2015). Global Navigation Satellite System (GNSS) data, e.g. Real Time 

Kinematics GPS (RTK-GPS), is often also available through the CAN bus port, which 

allows, among others, vehicle monitoring and dynamic optimised route planning 

(Edwards et al., 2017; Villa-Henriksen et al., 2019). 

Many different sensors and actuators are employed in arable farming. The type of device 

used depends on the purpose of the system in addition to the technologies implemented 

in the system. And the number of devices is steadily increasing. The number of IoT device 

installations in farms is expected to increase globally from 30 million installations in 2015 

to 75 million in 2020. Furthermore, data points generated per day and farm are expected 

to increase from 190000 in 2014 to over half a million by 2020 (Meola, 2016). It was also 

estimated that by 2018 there would be 10 billion IoT devices employed in agriculture. 

However, the great amount of data generated is often unused or underutilised (Bennett, 

2015), e.g. in countries like Denmark with a relative high ICT adoption in farms, only 2-

5% of farmers worked in 2016 actively with the data generated (SEGES, 2016). Even if 

data usage is still relatively low it is expected to increase rapidly (Bennett, 2015; Wolfert 

et al., 2017; World Bank, 2017) An overview about how they are implemented for 

different purposes is presented in the Applications section.  

2.3.2 Network layer 

The network layer communicates initially the data to an intermediary platform and 

eventually to the internet (cloud), and from there to, for example, employed actuators. 

When the data is transferred to the intermediary platform, it typically uses wireless 

communication technologies, for instance RFID, WSN with Zigbee, LoRa (Long Range), 

etc., and more recently Near-Field Communication (NFC) (Sundmaeker et al., 2016; 

Verdouw, 2016a; Tzounis et al., 2017; Kassal et al., 2018). The intermediary platform is 

normally an internet gateway located in the vicinity of the connected devices, including 

also sometimes a proxy server, where the data is collected and occasionally processed in 

order to send the information further to the end user through the internet by the use of 

e.g. MQTT standards, or HTML or XMPP protocols. 

 



22 
 

 
 
Table 2. Wireless communication technologies (adapted from Jawad et al. (2017), Ray (2017) & 
Tzounis et al. (2017)) 
Technology Standard(s) Frequency Data rates Range Power 
ANT+ ANT + Alliance 2.4 GHz 1 Mb s^-1 30-100 m 1 mW 
Cognitive 
Radio 

IEEE 802.22 
WG 

54-862 MHz 24 Mb s^-1 100 km 1 W 

Bluetooth (2.0, 
2.1, 3.0) 

Bluetooth, 
IEEE 802.15.1 

2400-2483.5 
MHz 

1–24 Mb s^-1 10–100 m 0.1-1 W 

BLE IoT Inter-
connect 

2400-2483.5 
MHz 

1 Mb s^-1 10 m 10-500 mW 

EDGE 3GPP GSM 850 / 1900 
MHz 

384 kb s^-1 26 km / 10 km 3 W / 1 W 

GPRS 3GPP GSM 850 / 1900 
MHz 

171 kb s^-1 25 km / 10 km 2 W / 1 W 

HSDPA/HSUPA 3GPP 850/1700/1900 
MHz 

0.73-56 Mb s^-
1 

27 km / 10 km 4 W / 1 W 

ISM/SRD860 IEEE 802.11 433 MHz, 863-
870 MHz 

200 kb s^-1 50 m – 2 km Very low 

LoRaWAN LoRaWAN 868/900 MHz, 
various 

0.3–50 kb s^-1 2-15 Km Very low 

LR-WPAN IEEE 802.15.4 
(ZigBee) 

868/915 MHz, 
2.4 GHz 

40–250 kb s^-1 10–20 m Low 

LTE 3GPP 700-2600 MHz 0.1-1 Gb s^-1 28 km / 10 km 5 W / 1 W 
NB-IoT 3GPP Rel.13 180 kHz DL: 234.7 kb 

s^-1 
DI: 204.8 kb 
s^-1 

Using LTE/4G 
base stations 

Low 

NFC ISO/IEC 13157 13.56 MHz 424 kb s^-1 0.1-0.2 m 1-2 mW 
RFID Many 

standards 
13.56 MHz 423 kb s^-1 1 m 1 mW 

SigFox SigFox 908.42 MHz 10-1000 b s^1 30-50 km N/A 
THREAD IEEE 802.15.4 2400-2483.5 

MHz 
251 kb s^-1 11 m 2 mW 

Weightless-
N/W 

Weightless SIG 700 / 900 MHz 0.001-10 Mb 
s^-1 

5 km 40 mW / 4 W 

WiFi IEEE 802.11 
a/c/b/d/g/n 

2.4, 3.6, 5, 60 
GHz 

1 Mb s^-1– 
6.75 Gb s^-1 

20–100 m 1 W 

WiMAX IEEE 802.16 2 GHz–66 GHz 1 Mb s^-1–1 Gb 
s^-1 (Fixed) 
50–100 Mb s^-
1 

<50 Km N/A 

ZigBee IEEE 802.15.4 2400-2483.5 
MHz 

250 kb s^-1 10 m (100m) 1 mW 

Z-Wave Z-Wave 908.42 MHz 100 kb s^-1 30 m 1 mW 
2G (GSM) GSM, 

CDMA 
865 MHz, 
2.4 GHz 

50–100 kb s^-1 
 

Mobile 
network area 

Medium 

3G & 4G UMTS, 
CDMA2000 

865 MHz, 
2.4 GHz 

0.2-100 Mb s^-
1 

Mobile 
network area 

Medium 

5G* 3GPP, ITU IMT-
2020 

0.6-6 GHz, 26, 
28, 38, 60 GHz 

3.5-20 Gb s^-1 
(peak rates 10-
100 Gb s^-1) 

Mobile 
network area 

Medium 

6LoWPAN IEEE 802.15.4 908.42 MHz or 
2400e2483.5 
MHz 

250 kb s^-1 100 m 1 mW 
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The use of Android smart devices or other operating systems, is increasing in popularity 

also among agricultural applications, as they can be employed as a gateway for 3G and 4G 

networks, and they frequently include other wireless communication technologies, e.g. 

Bluetooth, Wi-Fi, GPRS and NFC. They also automatically conform to communication 

standards and protocols, in which way interoperability is increased (Balmos et al., 2016; 

Ferrández-Pastor et al., 2016; Gao & Yao, 2016; Hernandez-Rojas et al., 2018; Villa-

Henriksen et al., 2019). In addition, Android and other smart devices can include GNSS 

and RGB camera sensors, and can relatively easily be programmed for computing data 

and displaying Graphical User Interface (GUI) applications being able to 

straightforwardly update the software if necessary. In that manner, Android and similar 

smart devices are represented in all three IoT layers, i.e. sensing in the device layer, node 

or gateway in the network layer, and computing data and displaying GUI in the 

application layer. Furthermore, the automatic software updating possibilities of smart 

devices allow to remotely install updates with new functionalities, bug fixes, etc. and 

easily improve the interoperability of the system (Ferrández-Pastor et al., 2016). 

Many different wireless technologies have been applied for diverse purposes in 

agriculture, depending on economical, accessibility and capability factors. Jawad et al. 

(2017), Ray (2017) and Tzounis et al. (2017) presented a good overview of the 

specifications of wireless communication technologies implemented in IoT in an 

agricultural context, which have been here collected in Table 2 and complemented with 

information from other relevant articles (Sundmaeker et al., 2016; Alahmadi et al., 2017; 

Sinha et al., 2017; Elijah et al., 2018; Kassal et al. , 2018). The great variety of technologies, 

standards and frequency bands used exposes the relevant interoperability and 

application challenges found when applying IoT technologies. Potential communication 

standards for smart farming can be classified into short-range and long-range according 

to their communication distance, which determine their specific usability in different 

requirement settings. This is particularly the case in arable farming, where mobile 

network accessibility can be an issue in many rural areas, and where large farm sizes limit 

the use of some wireless technologies due to their reduced communication distance and 

due to their necessity to replace/recharge devices batteries on nodes over large areas. 

These issues are addressed in the challenges section later. 

A WSN is formed by pervasive devices called motes or sensor nodes, which integrate 

sensors and actuators that communicate wirelessly forming a spatial network (Jawad et 

al., 2017; Tzounis et al., 2017; Hernandez-Rojas et al., 2018). In a WSN, base stations act 

as gateway forwarding the data to the cloud. Different communication technologies 

support different network node architectures, e.g. star, tree or mesh. Depending on the 

application, different wireless communication technologies are employed in a WSN as 

each has different node architecture possibilities, data rates, ranges, standards, among 

others, being the use of ZigBee, LoRa, Bluetooth/BLE, WiFi and SigFox relatively common 

in agriculture. In arable farming, BLE has for example been employed for soil and air 
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monitoring and irrigation control (Hernandez-Rojas et al., 2018); ZigBee was for example 

used in a WSN for monitoring soil conditions and actuating an irrigation system (Mafuta 

et al., 2012) or crop monitoring (Zhai, 2017); and LoRa for air and water temperature of 

rice paddy fields (Tanaka, 2018) or smart irrigation control (Zhao et al., 2018). In order 

to cover larger distances, GPRS is appropriate and has been used for irrigation control 

(López-Riquelme et al., 2017), or for remote maintenance of machinery (Miettinen et al., 

2006). GPRS, or other technologies, such as LTE, or 3G/4G, are also commonly used at the 

gateway to transmit data to the cloud. Regarding other less common communication 

technologies used in WSNs, RFID can be integrated into a WSN too by connecting the RFID 

tag readers to a radio-frequency transceiver (Costa et al., 2013). 

Passive and active RFID technologies are to a great extent used in agricultural research 

and industry (Ruiz-Garcia and Lunadei, 2011), especially for animal production (e.g. 

Kamilaris et al., 2016), as well as vegetable or fruit products traceability (e.g. Kodali et al., 

2017); however, in arable farming only few examples have been found: e.g. RFID tags 

used for irrigation scheduling (Vellidis et al., 2008), for agrochemical traceability (Peets 

et al., 2009), for vehicle monitoring (Sjolander et al., 2011), and even on a prototype for 

soil temperature monitoring (Hamrita and Hoffacker, 2005). Regarding NFC, no concrete 

examples of NFC used in arable farming have been found in the literature reviewed. 

Finally, the latest generation of mobile communications, i.e. 5G, has higher data rates, 

large coverage areas, higher peak throughput, and also improved flexibility, which can 

open new possibilities and may solve some of the challenges encountered by many IoT 

solutions (Marsch et al., 2016; Alahmadi et al., 2017). 5G allows new options for 

monitoring rural areas with no previous infrastructure for Internet connection (Faraci et 

al., 2018). 5G can also improve vehicle-to-vehicle or vehicle-to-anything communication 

in e.g. logistics solutions, due to its low latency and new frequency bands (Marsch et al., 

2016). A challenge for the 5G networks will be the great increase of devices to support 

once IoT becomes a standard solution not only in agriculture, but also in any sphere of 

everyday life. 

 

2.3.3 Application layer 

The application layer is crucial in an IoT context as it is this layer that actually adds value 

to the sensed and communicated data through direct controlling devices, supporting 

farmers decision making, etc. In this layer, several important services occur such as data 

storage, data analytics, data access through an appropriate Application Programming 

Interface (API), as well as possibly a user interfaced software application. The layer may 

also include middleware platforms that aid handling the heterogeneous cloud data 

improving interoperability. 

Data storage can be cloud based, i.e. on multiple servers, or more local based, where data 

is stored in different types of databases, depending on the application and design. Even if 
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relational databases, such as Structured Query Language (SQL) databases (Gao & Yao, 

2016; Goap et al., 2018; Ray, 2017; Wang et al., 2014), MySQL (Kaloxylos et al., 2014), or 

PostgreSQL (Mazon-Olivo et al., 2018) are employed in some of the reported applications 

in the reviewed articles, non-relational databases, such as Not only SQL (NoSQL), or also 

SPARQL, a semantic query language based database, are gaining attention due to their 

flexibility and scalability, especially when dealing with Big Data. Their ability to store and 

manage large amounts of heterogeneous data, makes them suitable in many IoT 

agricultural contexts (Huang and Zhang, 2017; Kamilaris, Kartakoullis and Prenafeta-

Boldú, 2017). Examples of NoSQL employed in agriculture are Cassandra (Huang and 

Zhang, 2017), Dynamo (Xian, 2017), HBase (Wang et al., 2014; Ray, 2017) and MongoDB 

(Martínez et al., 2016). An example of SPARQL is found in Jayaraman et al. (2016). 

Data analytics can be achieved by cloud computing, where computer resources are 

managed remotely to analyse data, often Big Data, or by distributed computing, e.g. edge 

and fog computing. Cloud computing has the advantage that it provides high quality 

services that allow independent executions of multiple applications as if they were 

isolated, even if they are on the same platform, e.g. in data centres, which is especially 

relevant when dealing with Big Data (Martínez et al., 2016; Tzounis et al., 2017; 

Hernandez-Rojas et al., 2018). However, cloud computing techniques mostly rely on 

general purpose cloud providers that do not comply with specific agricultural service 

requirements (López-Riquelme et al., 2017) and can experience latency issues, which are 

not acceptable in IoT solutions where monitoring, control and analysis require fast 

performances (Ferrández-Pastor et al., 2018). Examples of application of cloud 

computing related to arable farming can be found in Khattab et al. (2016), Na & Isaac 

(2016) and López-Riquelme et al. (2017). Khattab et al.(2016) presents an IoT 

architecture with a cloud-based back-end where weather and soil data is processed and 

analysed for automatic activation of irrigation and spraying actions. Na & Isaac (2016) 

describes a human-centric IoT architecture with a list of cloud services, such as language 

translation, data simplification or updated market price information. And López-

Riquelme et al. (2017) uses FIWARE components for a cloud service for smart irrigation 

tasks, focusing on the benefits of using FIWARE as cloud provider. Regarding Big Data 

analysis and Big Data in general in an agricultural context, Kamilaris et al. (2017) and 

Wolfert et al. (2017) have performed respectively exhaustive reviews on the subject.  

The use of IoT middleware platforms is gaining interest due to its potential for solving 

different challenges found in the application of IoT, especially interoperability. IoT 

middleware platforms try to simplify the complex communication through the cloud due 

to heterogeneity of devices, communications and networks, by using enablers like 

standardised APIs and protocols (Jayaraman et al., 2016; Martínez et al., 2016; O’Grady 

and O’Hare, 2017). Examples of these are HYDRA, UBIWARE, UBIROAD, UBIDOTS, 

SMEPP, SIXTH, Think Speak, SensorCloud, Amazon IoT and IBM IoT, with focus on context 

aware functionality; SOCRADES, GSN and SIRENA, with more focus on security and 

privacy; Aneka, WSO2, PubNub, SmartFarmNet and FIWARE, with a wider services 

oriented approach; and projects like IoT-A, OpenIoT, or ArrowHead (Gill et al., 2017; 
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Jayaraman et al., 2015; Jayaraman et al., 2016; Kamilaris et al., 2016; Martínez et al., 2016; 

Ray, 2017; Sundmaeker et al., 2016). Even if all these and more solutions are found in the 

IoT market, an intelligent middleware solution that addresses most issues observed in 

smart farming successfully is yet to be implemented (Jayaraman et al., 2016; Martínez et 

al., 2016; Sundmaeker et al., 2016). However, FIWARE (Martínez et al., 2016; Ferreira et 

al., 2017; López-Riquelme et al., 2017; Rodriguez et al., 2018) and SmartFarmNet 

(Ferrández-Pastor et al., 2018; Jayaraman et al., 2016) have been implemented effectively 

for precision and smart farming applications. 

In order to communicate data across platforms and IoT devices, ensuring 

interoperability, APIs are essential. These should adapt to evolving or new standards in 

order to ensure a longer life span, which may become a limitation if the APIs are not 

updated. It is through the APIs that data is made available for the IoT applications (e.g. 

Goap et al., 2018; Hernandez-Rojas et al., 2018). These services may include tracing, 

monitoring, event management, forecasting or optimisation for agricultural activities and 

products. These applications related to arable farming are described in the next section 

below. 

 

2.4 Current and potential applications 

Multiple applications can be derived from the implementation of IoT in arable farming. 

These applications can always be conceptualised into the three IoT layers described 

previously, and are not to be confused with the application layer. Elaborations of the 

reviewed articles show that the applications have been differentiated and categorised as 

follows:  monitoring, documentation, forecasting and controlling. Monitoring refers to 

timely sensing of very diverse parameters and is mostly the initial point of entry for other 

applications. Documentation covers the storing of sampled data for a posterior use in e.g. 

farm management or traceability of produces. Forecasting employs different sources of 

data through precisely designed analytic methods for predicting concrete events. And 

controlling is the result of active monitoring, where processed data is used to 

automatically activate and control actuators in a predefined manner. A summarising table 

collects all the IoT applications in arable farming described in this chapter (Table 3). Most 

IoT-based systems include at least two of these applications and isolated applications are 

seldom seen. In addition, special attention has been paid on FMIS and associated decision 

support to improve operations and production processes involving vehicle positioning 

analytics, optimisation and logistics, which are key elements in arable farming (Bochtis 

et al., 2011; Bochtis et al., 2014) and have consequently got a section of its own. 
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Table 3. IoT applications in arable farming. 
Applications Examples References 
Monitoring Crop Leaf area index (Bauer and Aschenbruck, 2018) 

Plant height and leaf parameters (Okayasu et al., 2017) 
Soil Moisture (Brinkhoff et al., 2017; Kodali & Sahu, 

2016) 
Chemistry (Kassal et al., 2018) 

Irrigation water pH and salinity (Popović et al., 2017) 
Weather Air (T, atm and RH), rainfall, 

radiation, and wind speed and 
direction 

(Yan et al., 2018) 

Remote sensing Estimating crop biomass and N 
content 

(Näsi et al., 2018) 

Irrigation scheduling and plant 
disease detection 

(Khanal et al., 2017) 

Machinery Vehicle position and yield data (Oksanen et al., 2016) 
Machine performance (Miettinen et al., 2006; Pfeiffer & 

Blank, 2015) 
Farm facilities Crop storage temperature and 

moisture levels 
(Green et al., 2009; Juul et al., 2015) 

Environment Nutrient leaching (Burton et al., 2018) 
Contaminants (Severino et al., 2018) 
Emissions (Manap and Najib, 2014) 

Documentation 
and 
traceability 

Machinery Field mapping (Fountas, Carli, C. G. Sørensen, et al., 
2015) 

Yield mapping for fertilisation 
planning 

(Lyle et al., 2014) 

Soil mapping for site-specific 
amendment measures 

(Godwin & Miller, 2003; McBratney 
et al., 2003) 

Remote sensing Mapping crop development (Khanal, Fulton and Shearer, 2017; 
Näsi et al., 2018; Viljanen et al., 2018) 

Mapping soil texture and residue 
coverage 

(Khanal, Fulton and Shearer, 2017) 

Supply chain Agri-food traceability (Bochtis and Sørensen, 2014; 
Pesonen et al., 2014) 

Forecasting Machine learning 
models 

Forecasting max. and min. T at field 
level 

(Aliev, 2018) 

Estimating levels of P in the soil (Estrada-lópez et al., 2018) 
Forecasting soil moisture (Goap et al., 2018) 
Plant disease forecasting (Aasha et al., 2017; Jain et al., 2018) 
Predicting irrigation 
recommendations 

(Goldstein et al., 2018) 

Frost prediction (Diedrichs et al., 2018; Moon et al., 
2018) 

Forecast of harvest and fertilisation 
dates 

(Viljanen et al., 2018) 

Classical models Soil moisture and contaminant 
dynamics forecasting for irrigation 
scheduling 

(Severino et al., 2018) 

Fungal disease forecast in cereals (El Jarroudi et al., 2017; Mäyrä et al., 
2018) 

Forecasting field trafficability and 
workability for field operations 

(Edwards et al., 2016) 

DAISY soil-crop-atmosphere model (Abrahamsen and Hansen, 2000) 
RUSLE soil erosion model (Renard et al., 1991) 

Controlling Irrigation Fully autonomous irrigation scheme (Goap et al., 2018) 
Machinery Variable rate fertilisation (Peets et al., 2012) 

Site-specific weed control (Christensen et al., 2009) 
In-row cultivation in precision 
seeding 

(Midtiby et al., 2018) 

Adaptive route planning in field 
operations 

(Edwards et al., 2017; Seyyedhasani 
& Dvorak, 2018; Villa-Henriksen et 
al., 2018) 

Autonomous 
vehicles & robots 

Operations of autonomous vehicles (Bechar and Vigneault, 2016) 
In-field obstacle detection (Christiansen et al., 2016) 
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2.4.1 Monitoring 

Automatic monitoring is the obvious first step in IoT applied to agriculture. Strategically 

placed sensors can automatically sense and transmit data to the cloud for further 

documentation, forecasting or controlling applications. Sensors are used to monitor crop 

parameters such as leaf area index (e.g. Bauer & Aschenbruck, 2018), plant height and 

leaf colour, size and shape (e.g. Okayasu et al., 2017); soil parameters such as soil 

moisture (e.g. Kodali & Sahu, 2016; Brinkhoff et al., 2017) or soil chemistry (e.g. Kassal et 

al., 2018); irrigation water parameters such as pH and salinity (e.g. Popović et al., 2017); 

or weather parameters such as air temperature, air pressure, air relative humidity, 

rainfall, radiation, wind speed and wind direction (e.g. Yan et al., 2018). In addition, 

remote sensing can also be employed, i.e. instead of sensors placed in the field they are 

installed on satellites or Unmanned Aerial Vehicles (UAV). However, these measurements 

mostly require some form of processing and interpretation as the values sampled are not 

directly related to the targeted parameters. An example of monitoring through remote 

sensing is the estimation of  crop biomass and nitrogen content by the use of hyper and 

multispectral images (Näsi et al., 2018), or the use of thermal remote sensing, which was 

applied for e.g. irrigation scheduling or plant disease detection (Khanal et al., 2017). 

Furthermore, agricultural machinery can also be remotely monitored, e.g. vehicle 

position and yield data (Oksanen et al., 2016), or machine performance (Miettinen et al., 

2006). This is especially relevant with the increasing appearance of autonomous vehicles 

and robots in agriculture (Sundmaeker et al., 2016). Finally, at farm level the storage of 

crops can also be monitored to ensure the  correct control of, for example temperature 

and moisture, and avoid losses due to damages (Green et al., 2009; Juul et al., 2015). 

Environmental impact indicators should be integrated in the farm monitoring 

applications, so that leaching (Burton et al., 2018), contaminants (Severino et al., 2018) 

or emissions (Manap and Najib, 2014) are addressed too. 

2.4.2 Documentation and traceability 

Collected operations and process data once stored can be used for documentation. 

Documentation is usually the natural application of monitored data but it must be noted 

that it can also include  other types of sampled data, such as manually input or 

documentation of performed control actions (Sørensen et al., 2011). The data is stored as 

raw data or as processed data at different levels. Documentation is essential for decision-

making, controlling or analytics, and is an indispensable element in FMIS (Kaloxylos et 

al., 2014). Mapping is also a form of documentation where data is spatially projected onto 

a map. On-the-go sensors installed on vehicles and implements can be used for automated 

field mapping (Fountas et al., 2015), e.g. yield mapping used for posterior fertilisation 

planning (Lyle et al., 2014), or soil mapping for site-specific amendment measures 

(Godwin & Miller, 2003; McBratney et al., 2003). Remote sensing can also be used for 

mapping crop development (Khanal et al., 2017; Näsi et al., 2018; Viljanen et al., 2018), 

or soil texture and residue coverage (Khanal et al., 2017). Remote sensing is becoming a 

popular tool for monitoring and mapping, but is still to be proven feasible for all its 

potential applications. When documentation data sets extend beyond the farm level so 
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that it can be traced throughout the supply chain, it is often referred as traceability and 

this notion is a key element in agri-food supply chain management as a measure to satisfy, 

for example, consumer demands (Bochtis & Sørensen, 2014; Pesonen et al., 2014). 

2.4.3 Forecasting 

Forecasting is one of the fundamental functions for decision making that IoT brings to 

agriculture. Access to “real-time” data and historical data is used for forecasting events 

that require some form of action for managing successfully the crop or field operation. 

Therefore, both monitoring and documentation are important prerequisites for enabling 

forecasting. Forecasting is employed as preventive measures that require some action 

due to a predicted event, e.g. weeding, irrigating or harvesting. Machine learning and 

scientific modelling are examples of tools employed for forecasting. 

Different machine learning models have been employed, e.g. Artificial Neural Networks 

for forecasting maximum and minimum temperatures at field level (Aliev, 2018) or for 

estimating levels of phosphorus (P) in the soil (Estrada-lópez et al., 2018); support vector 

regression method for forecasting soil moisture (Goap et al., 2018) or plant disease 

detection (Aasha Nandhini et al., 2017); gradient boosting for predicting irrigation 

recommendations (Goldstein et al., 2018); Bayesian networks and random forest for frost 

prediction (Diedrichs et al., 2018); multiple linear regression and random forest in 

estimating yield and fertilisation requirements for forecasting harvest and fertilisation 

dates (Viljanen et al., 2018); or also for frost prediction using four different machine 

learning algorithms: decision tree, boosted tree, random forest, and regression (Moon et 

al., 2018). A rather different forecasting approach was employed by Jain et al. (2018), 

where three different models, i.e. random forest, support vector machine and artificial 

neural network were used for forecasting diseases and at the same time for adaptive data 

collection from the network of nodes in order to reduce data traffic and energy 

consumption of the network. Summarising, IoT is allowing the sampling of big amount of 

data, which can be employed as training data by the machine learning algorithms to build 

predictive mathematical models. Machine learning is opening new possibilities for 

effectively forecasting events in arable farming, which might change the very nature of 

decision making in agriculture. 

Scientific modelling has also been employed for forecasting in an IoT context, e.g. soil 

moisture dynamics and contaminant migration forecasting using soil sensor data and 

precipitation forecasts for irrigation scheduling (Severino et al., 2018); fungal disease 

forecast in winter wheat (El Jarroudi et al., 2017) and barley (Mäyrä et al., 2018); or 

forecasting field trafficability and workability for field operations (Edwards et al., 2016). 

These modelling tools have an important role in agriculture as they are conscientiously 

developed and validated by the scientific community, and can forecast events with which 

machine learning models are very limited. There is also a big potential of integrating 

existing and acknowledged modelling tools such as the soil-crop-atmosphere system 

model DAISY (Abrahamsen and Hansen, 2000) or the soil erosion model RUSLE (Renard 

et al., 1991) to an IoT solution. 
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Many of these solutions can make agriculture in general, and arable farming in particular, 

more resource efficient, e.g. through smart irrigation, as well as environmentally friendly, 

e.g. by smart pest and disease management. 

2.4.4 Controlling 

In IoT, controlling is the result of active monitoring in an automated system, where the 

monitored variables are automatically adjusted to, for examples, predefined thresholds. 

Forecasting can also play an important role in controlling. This is, for example, the case 

in smart irrigation systems, where the irrigation is activated before drought damages in 

the crop are recognised reducing yield losses. Goap et al. (2018) employed real-time 

sensing of soil moisture and soil temperature in combination with weather forecasts to 

control a fully autonomous irrigation scheme. Sensors on-the-go installed in tractors and 

implements can as well be used to control e.g. variable rate fertilisation (Peets et al., 

2012), site-specific weed control technologies (Christensen et al., 2009), or in-row 

cultivation controlled by plant patterns in precision seeding (Midtiby et al., 2018). 

Controlling is crucial in smart farming as it allows the automation of systems, especially 

considering the operations of autonomous vehicles and robots in the fields (Bechar and 

Vigneault, 2016), where site-specific actions and sensing-based safety systems will play 

an important role, e.g. for in-field obstacle detection for autonomous vehicles 

(Christiansen et al., 2016). 

2.4.5 FMIS 

FMIS can be defined as systems that store and process farm-related collected data and 

provide decision supporting tools for farm management (Paraforos et al., 2016). FMIS 

assist farmers in the execution and documentation of farm activities, their evaluation and 

optimisation, as well as in strategic, tactical and operational planning of the farm 

operations (Kaloxylos et al., 2014). FMIS are consequently systems that can encapsulate 

all the applications previously described, and are vital elements in smart farm 

management. However, the adoption of targeted FMIS to the new IoT technologies is 

slow. A study published in 2015 showed that most FMIS architectures used at the time, 

were designed in the 1980s by researchers. This may explain why most FMIS currently 

have a structure and an architecture that is not suitable for distributed and service 

oriented decision support required for supporting precision agriculture and smart 

farming solutions, e.g. 75% of FMIS are still PC-based, and functionalities regarding 

traceability, quality assurance and agronomic best practice estimate are still missing or 

in their initial development stages in most commercial FMIS (Fountas, et al., 2015). FMIS 

are key in smart farming and they should support automatic data acquisition, monitoring, 

documenting, planning and decision making (Köksal and Tekinerdogan, 2018). The latest 

research on IoT-based FMIS is expected to become part of the commercial FMIS available 

in the near future and will cover different needs across the supply chain and needs of the 

of IoT-based agriculture as a whole, as well as complying with standards ensuring 

interoperability between systems. In addition, decision support systems (DDS) are 

essential in dealing with Big Data and assisting the farm manager in managing and 
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decision making in tasks such as farm financial analysis, business processes or supply 

chain functions (Kaloxylos et al., 2012; Fountas, Carli, C. G. Sørensen, et al., 2015). In order 

to design an up-to-date FMIS, it is beneficial to use preliminarily dedicated system 

analysis methodologies, such as soft system methodologies (SSM) for identifying 

required changes and constraints and propose solutions, followed by a later hard system 

modelling for designing the required specifications and components of the system 

(Sørensen et al., 2010; Fountas, et al., 2015). It is also necessary to base FMIS on the cloud 

as it allows interconnection with diverse additional services (Kaloxylos et al., 2014). This 

development points out the inevitable need of standardisation of APIs in order to achieve 

interoperability among applications and services as part of the FMIS. New technologies 

such as distributed management systems can also enhance to a great extent the 

capabilities of FMIS (Fountas et al., 2015). Furthermore, the introduction of agricultural 

moving robots in the near future, as well as the wireless and automatic control and 

monitoring of agricultural machinery is also to be considered in the design and 

development of FMIS (Fountas, et al., 2015; Paraforos et al., 2016). The future FMIS will 

also be capable of emulating farmers different work habits, as the system will automate 

certain tasks previously performed by farmers, which will require additional training 

(Sørensen et al., 2011). Consequently, it is  important to provide supportive adoption and 

transition strategies for conventional farming to convert into smart farming (Köksal and 

Tekinerdogan, 2018). Examples of current FMIS employed in arable farming are offered 

by different technology providers: machine manufacturers, institutions or targeted 

private companies. Some manufacturers provide their own farm management tools, such 

as Agricultural Management Solutions (AMS) from John Deere, or Precision Land 

Management (PLM) from New Holland. Across brands some FMIS have a more local 

approach, e.g. the Dutch Akkerweb developed by Wageningen University and Research, 

while other commercial solutions have a global approach, e.g. 365FarmNet, Agworld or 

FarmWorks.  

2.4.6 Vehicle navigation, optimisation and logistics 

Navigation systems are widely used in arable farming with the successful implementation 

of auto-steering systems in tractors and harvesters. However, IoT-based solutions are 

still in its early stages. IoT-based field operation monitoring (Oksanen et al., 2016) or 

monitoring of motor and machine performance (Pfeiffer and Blank, 2015) have been 

effectively implemented on harvesting operations. Commercial examples of agricultural 

telematics are Trimble’s Connected Farm, AGCO’s AgCommand, John Deer JDLink, New 

Holland’s PLM Connect or CLAAS’ telematics; however, they are all closed systems, which 

limits greatly the possibilities of the IoT technologies, especially interoperability 

(Oksanen et al., 2015). 

Regarding optimised route planning, pre-planning harvest operations based on field data 

using simulation models can improve the harvest capacity of the vehicle or fleet saving 

working hours as well as fuel consumption (Busato et al., 2007; Bochtis & Sørensen, 2009; 

Bakhtiari et al., 2011; Jensen et al., 2012; Zhou et al., 2014). However, field complexity 
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and vehicle fleet size can become major hurdles for the algorithms employed (Skou-

Nielsen et al., 2017; Seyyedhasani et al., 2019). The accessibility of field and harvest data 

can be eased by IoT technologies that allow automated data collection and sharing via 

common communication protocols and standards, in interoperable data formats, with 

compatible data model hierarchies; although, this is not always the case (Tzounis et al., 

2017). IoT also allows to employ cloud or fog computing to solve the high computational 

requirements of these route planning models (Seyyedhasani et al., 2019), even though 

the computing can also be achieved at the edge (Villa-Henriksen et al., 2018). Data 

communication costs, latency problems and unstable mobile connectivity may pose 

important challenges for route planning applications that rely only on cloud computing, 

making mobile edge computing more adequate and robust for these systems. 

Nevertheless, true IoT-based dynamic route planning is still in its infancy but gaining 

increasingly attention, especially with the arrival of agricultural robots (Bechar & 

Vigneault, 2016; Kayacan et al., 2015). Concerning its application, until recently, harvest 

logistics has employed field sampled data, i.e. boundaries, obstacles, gates, etc., to 

optimise the route of the vehicles involved in the operation statically (e.g. Bakhtiari et al., 

2011; Jensen et al., 2012), where the complete routes of all vehicles are planned a priori. 

Nevertheless, these plans do often not comply with real-world challenges as they do not 

adapt to variating inputs, e.g. vehicle speed changes or in-field yield variations, or to 

unforeseen situations, e.g. machine breakdowns, eventual out of field delays, non-

trafficable wet spots, undefined obstacles, etc. There is consequently the need to integrate 

route optimisation and operation logistics in IoT systems, where the optimisation can 

adapt dynamically to varying input and unforeseen events. It is only in the last few years 

that harvest logistics really started adapting dynamically to parameters such as vehicles’ 

behaviour or in-field yield variations (Edwards et al., 2017; Seyyedhasani & Dvorak, 

2018; Villa-Henriksen et al., 2019). 

Today, new possibilities for optimising infield operations arrive with the large amount of 

data available via internet, e.g. remote sensing data or other collected spatial data. These 

could be adaptive planning based on trafficability maps for reducing soil compaction or 

avoiding vehicles to get stuck in wet spots; or selective harvesting based on predicted 

grain quality maps, which is expected to increase the price of the crop harvested. 

2.5 Challenges and solutions 

When implementing IoT in arable farming, as well as in other contexts, diverse challenges 

limit or affect the performance of the systems employed. The challenges identified in the 

literature reviewed (Figure 11) can indicate which areas need to be taken into account 

when designing an IoT-based system or point out areas that require further research. 

However, the results presented in the figure are indicative and not necessarily describe 

the importance of the challenges included, especially because of the multiple applications 

and implementation designs that are conceivable in arable farming. Any of the challenges 
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can become crucial in different setups, and are therefore described. In addition, all 

challenges can be related to or have consequences on other challenges. 

 

Figure 11. Percentage of challenges mentioned by the literature reviewed, divided by time periods 

and grouped in IoT layers. 

Interoperability, in general, is a major hurdle in the application of IoT. There are different 

dimensions related to it: technical, syntactical, semantic and organisational (Veer and 

Wiles, 2008; Serrano et al., 2015). Technical interoperability refers mostly to the 

communication protocols which affect the hardware and software components 

implemented. Syntactical interoperability is usually related to data formats, their syntax 

and encoding. Semantic interoperability concerns the interpretation of data contents, i.e. 

the meaning of the information exchanged. And organisational interoperability involves 

intercommunication of meaningful information across organisations regardless of 

information systems and infrastructures in a world-wide scale. As interoperability is such 

a generic term, in this section, technical interoperability has been addressed as part of 

the communication protocol challenge, syntactical and semantic interoperability have 
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been included under the data heterogeneity challenge, and organisational 

interoperability have been described under the scalability challenge. 

2.5.1 General challenges 

Revenue and affordability 

Often the investment for establishing an IoT-based solution is high and as such 

challenging for small-scale farmers, while larger farms can easier acquire IoT-based 

technologies when investing in new equipment (Brewster et al., 2017). The uncertainty 

regarding required costs, e.g. fuel or water allocations, and selling prices of the product 

give little margin for many farmers for investing in new technologies (Higgins et al., 

2017). Trust plays an important role when investing in IoT systems, and relieving the 

perceived risks by demonstrating the revenues of its adoption are essential (Ferrández-

Pastor et al., 2016; Jayashankar et al., 2018). For example, in Europe 70% of all fertilising 

and spraying machinery is equipped with at least one precision agriculture technology, 

but only 25% of farmers actually use precision agriculture components in their farms 

(Say et al., 2017). Technology providers need to increase the perceived value by 

demonstrating the financial return from IoT in order to diminish the perceived risk of 

adoption many farmers have. Technology providers need also to provide robust tools that 

are aligned with farmer needs and practices in order to gain accept and trust of IoT 

technologies. These technologies need to reduce the workload, assist in decision making 

and improve the efficiency of the targeted practice. Additionally, technology providers 

need to develop interoperable and flexible solutions that can easily be integrated and 

comply with accepted standards. Governments can also incentivise the IoT adoption by 

policies and regulations, especially regarding documentation and traceability as ICT 

eases paperwork and bureaucracy. A reduction in percentage of mentions regarding this 

challenge (see Figure 11) could indicate that IoT is being more adopted in arable farming. 

In addition, IoT is likely to reshape the arable farming business. The implementation of 

monitoring and control of farming operations are generating substantial amount of 

valuable data that are essential for the business of technology providers. The way farmers 

will dive into the data economy, i.e. connecting their data to work in vertical and 

horizontal networks beyond the farm, will have an effect on their business models, as well 

as on the business models of technology providers. The point of view of farmers business 

regarding IoT has not been fully addressed in the literature reviewed and will require 

further investigation.  

Data heterogeneity 

The diverse data sources and sensor manufacturers imply use of different unit systems, 

data structures and nomenclatures in different data formats, which result in reduced 

syntactical and semantic interoperability among IoT environments. Sensor data can be 

encoded in binary, or represented in formats such as json, xml, text (e.g. csv), shapefile, 

or even proprietary formats. The heterogeneity of data types and formats can also affect 

the performance of a protocol employed for communicating the information. 

Furthermore, this challenge becomes critical in situations such as system integration or 
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sharing data with other systems (e.g. FMIS), which could imply developing data 

conversion tools or even redesign of the IoT setup. The use of standardised formats can 

help with this challenge. Some attempts have been made on producing standards or 

standardised formats that cover the great heterogeneity of agricultural data, e.g. ISO 

11783 (ISOBUS) developed by the Agricultural Industry Electronics Foundation (AEF) for 

tractors and agricultural machinery, which is very relevant in arable farming (Miettinen 

et al., 2006; Peets et al., 2012; Fountas et al., 2015; Oksanen et al., 2015) or AgroXML 

developed by the Association for Technologies and Structures in Agriculture (KTBL) 

mainly for FMIS (Peets et al., 2012; Kaloxylos et al., 2014; O’Grady and O’Hare, 2017; 

Köksal and Tekinerdogan, 2018). These are now being integrated by the non-profit 

organisation AgGateway through the ADAPT framework and SPADE project for 

seamlessly communicating agricultural machinery data to FMIS, trying to enhance the 

existing standards and improve consequently interoperability (Brewster et al., 2017). A 

drawback of comprehensive data models, which try to describe all attributes of 

agricultural data, is that they become too cumbersome to handle in many applications. 

Finally, the use of middleware platforms applicable in smart farming, e.g. FIWARE or 

SmartFarmNet, can also reduce the problems caused by data heterogeneity (Ferrández-

Pastor et al., 2018; Ferreira et al., 2017; O’Grady & O’Hare, 2017; Serrano et al., 2015). 

Scalability and flexibility 

Organisational interoperability is a key element concerning scalability and flexibility 

(Serrano et al., 2015; Tzounis et al., 2017; Verdouw, 2016b). Many of the systems 

described in the literature reviewed are centralised, closed, difficult to integrate in other 

existing platforms or difficult to implement on larger scales, different farming systems or 

geographical areas. They are also challenging to integrate beyond the farm level and 

across the supply chain in order to provide agri-food safety and traceability. The use of 

standardised dynamic protocols, such as SOAP protocol; cloud-based infrastructures 

with extensible ontologies that cover the broad and diverse agricultural production 

systems and environments; fast and reliable APIs, e.g. RESTful; and middleware 

platforms applicable for smart agriculture, such as FIWARE with its generic enablers, are 

tools that are employed to achieve organisational interoperability and make the system 

developed more scalable and flexible (Serrano et al., 2015; Ferreira et al., 2017; López-

Riquelme et al., 2017; O’Grady & O’Hare, 2017). Service-Oriented Architectures (SOA) 

bring also possibilities to effectively integrate ecosystems through open and standardised 

interfaces, increasing organisational interoperability (Sørensen and Bochtis, 2010; 

Kaloxylos et al., 2014; Pesonen et al., 2014; Kruize et al., 2016; Köksal and Tekinerdogan, 

2018). 

Scalability and flexibility may also refer to WSNs in the literature, to their capacity to 

support increasing number of devices/nodes, being the network architecture, the 

gateway and protocols used the main constrains (Elijah et al., 2018). This challenge has 

been considered under the network size challenge. 
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Robustness and fault tolerance 

Many different factors can affect the overall robustness and fault tolerance of a system. 

Robust wireless connectivity is an important limitation in many setups (Oksanen et al., 

2016; Vuran et al., 2018). In the design of an IoT-based solution dealing with faults, errors 

and unforeseen events need to be taken into account in order to ensure the reliability of 

the system. Many of these issues are related to the other challenges presented here and 

can be handled at the device level, but also need to be thought into the overall IoT system 

design (Ferreira et al., 2017; Ray, 2017). 

Complexity 

The agricultural system is complex and can be challenging to work with. It is complex not 

only due to the multifaceted nature of the physical, chemical and/or biological processes 

in the soil-crop-air system, but also due to the technical complexity of hardware and 

software interacting with it. Depending on the novelty of the IoT technology implemented 

and the background of the developer and user, the systems can become more or less 

complex. For example, software and hardware incompatibilities can challenge its 

implementation and integration (Ferrández-Pastor et al., 2016), as well as many other 

challenges, e.g. the great field task diversity in arable farming, can add complexity to the 

system. Technical knowledge can become a major hurdle for the implementation of IoT 

in farms, and it is therefore important that user-friendliness and plug-and-play basis have 

a high priority for the technology providers (Sundmaeker et al., 2016; Zou and Quan, 

2017). Complexity should be an issue for the technology provider and not for the 

customer. 

In addition, the co-created development and implementation of IoT systems in 

agriculture by multi-actor approach is needed for overcoming the complexity at different 

levels of integrating IoT in agriculture. Good examples of this are the European Union 

supported research and development efforts  through multi-actor large-scale pilot 

projects, such as IoF2020 (Sundmaeker et al., 2016; Verdouw et al., 2017), AIOTI (Pérez-

Freire and Brillouet, 2015), SmartAgriFood (Kaloxylos et al., 2012), SMART AKIS (Djelveh 

and Bisevac, 2016), or more recently SmartAgriHubs (Chatzikostas et al., 2019).  

Lack of products 

In the early stages of precision agriculture and IoT in agriculture, products that integrated 

agronomy and ICT engineering were lacking, which hindered its adoption (Ferrández-

Pastor et al., 2016; Kitchen & Roger, 2007). The large scales and diversity of 

environments in arable farming can challenge the products used even more than in 

controlled environments, as they are to be modelled to describe larger areas, send 

information through larger distances and be exposed to harsher environments. Even if 

Figure 11 shows lack of references in the last couple of years, it is still relevant for some 

applications, e.g. for in-situ real-time soil nutrient sensing is still a real challenge, 

especially regarding calibration (Bünemann et al., 2018; Marín-González et al., 2013). 
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2.5.2 Device layer challenges 

Power consumption 

The use of wireless devices has major advantages over wired systems, as they are more 

economical to establish and can cover much wider areas. However, their power 

consumption with limited battery lives is a major drawback of many wireless systems, 

which needs to be accounted for. This issue is so important that it is the main identified 

challenge in the literature reviewed (Figure 11), especially for WSNs (Tan and Panda, 

2010; Jawad et al., 2017). The large distances to cover in arable farming make wireless 

devices indispensable, and solutions to reduce their power consumption and/or extend 

their battery life are required. These solutions can include energy harvesting, low power 

consumption sensors and communication technologies or power efficient management. 

Energy harvesting techniques can include solar cells, micro wind turbines or other 

interesting solutions which have been well described in Tuna & Gungor (2016) and Jawad 

et al. (2017). The power consumption of the communication technologies and sensors 

employed are also to be considered in the design of the IoT solution as there are big 

differences between devices (Balmos et al., 2016; Jawad et al., 2017; Hernandez-Rojas et 

al., 2018). Choosing low power sensors and communication devices is to be taken into 

account when designing the IoT system (Estrada-lópez et al., 2018). Low power wireless 

technologies, such as BLE have low power consumption but also low communication 

range, while Wi-Fi has somewhat higher communication range, but much higher power 

consumption (Table 2), however data rates and other parameters are important factors 

to consider too. ZigBee and LoRa have been identified as appropriate candidates for many 

farming applications (Jawad et al., 2017). Power efficient management techniques of 

WSNs such as sleep/active schemes, e.g. duty-cycling algorithms (Ahmed et al., 2018; 

Alahmadi et al., 2017; Balmos et al., 2016; Dhall & Agrawal, 2018; Temprilho et al., 2018); 

data mitigation schemes, e.g. data aggregation (Abdel-basset, Shawky and Eldrandaly, 

2018) or data compression (Moon et al., 2018); energy-efficient routing schemes, e.g. 

mobile sinks by the use of UAVs (Bacco et al., 2018; Uddin et al., 2018); and other 

combined solutions, e.g. LEACH, a cluster architecture with Time Division Multiple Access 

(TDMA) based MAC protocol and data aggregation scheme (Kamarudin et al., 2016), or 

dynamic power management by combining sleep/active states with dynamic data rates 

schemes (Estrada-lópez et al., 2018). Jawad et al. (2017) provides a good overview and 

description of WSN power efficient management techniques. Lastly, techniques such as 

edge computing may have higher power requirements on the device, making cloud 

computing more desirable if power consumption is a constraint in the projected IoT 

solution. 

On the other hand, mounting sensors and devices on agricultural vehicles and 

implements allows connection to the power supply of the vehicle and eliminate 

consequently power consumption as a limiting factor. The type of sensors that are 

mounted on vehicles and their implements is quite limited, being currently mainly 

camera-based (e.g. Steen et al., 2012; Midtiby et al., 2018). Nevertheless, there is for 

example potential in employing sensors on the coulters of seed-drills for mapping soil 
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properties (Nielsen et al., 2017), or other on-the-go sensors for mapping soil or crop 

variations (Peets et al., 2012).  

Device harsh environment 

The natural environment where sensors and other devices are placed in can challenge 

greatly their functionality and longevity. Harsh weather conditions, e.g. high temperature 

variations, intense rainfall or prolonged high humidity can cause water condensation 

inside the devices and consequently provoke corrosion and short circuits (Bauer and 

Aschenbruck, 2018). While sensors and other devices situated close to the ground 

experience exposure to dust, mud, or even corrosive chemicals, e.g. agro-chemicals, 

which can seriously damage the performance of the device or cause its total failure (Aliev, 

2018; Bauer and Aschenbruck, 2018). Chemical underground sensors are also exposed 

to soil chemical and biological processes that deteriorate the sensors and can mislead the 

measurements, requiring unfeasible maintenance and re-calibrations (Burton et al., 

2018; Kassal et al., 2018). Choosing adequate casing that does not interfere with the 

functionality of the device and also tolerates the environment they are located in are 

essential in the design of the IoT system. Sensors are also developed for different 

conditions, which need to match the system minimum requirements. RFID tags have been 

reported to perform flawlessly under extreme conditions and environments (Ruiz-Garcia 

and Lunadei, 2011; Costa et al., 2013); however, RFID technology is quite limited in its 

applications in arable farming, and suitable sensors and communication devices are 

therefore primarily dependent on the application and design of the IoT system. 

5.3 Network layer challenges 

Latency, throughput and rate 

The large amounts of data generated in IoT applications do not only cause problems 

regarding data storage or handling, but also latency problems that reduce the throughput 

of the network employed. In arable farming latency problems can be of great importance 

in some IoT solutions, e.g. in WSNs where high latency imply higher power consumption 

of a node (López-Riquelme et al., 2017), or in dynamic optimised route planning in vehicle 

logistics, which require rapid responses to deviations in the route plan (Villa-Henriksen 

et al., 2018). For reducing latency problems fog and edge computing can be employed, as 

these computing techniques decrease latency and network congestions (Elijah et al., 

2018; Ferrández-Pastor et al., 2018), e.g. data compression at the edge reduces the large 

volumes of data communicated through the network (Moon et al., 2018). In addition, the 

use of lightweight protocols can also reduce latency problems, e.g. LP4S for sensors 

(Hernández-rojas et al., 2018), or MQTT messaging protocol, which has a faster 

throughput than HTTP and works well for bandwidth limited networks (Estrada-lópez et 

al., 2018). The communication rate is important to have in mind when planning the 

wireless communication technology to implement, e.g. 5G can handle high-rates, while 

SigFox or IEEE 802.15.4-based protocols are for low-rates (Jawad et al., 2017; Bacco et 

al., 2018). The throughput of the network affects the communication rate, and the 

communication rates also influences the power consumption, which have to equally be 
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carefully considered. Fast response to events is achieved by data processing techniques 

such as data merging (Tanaka, 2018), data compression (Zhao et al., 2018), or dynamic 

and complex event processing rules for conditioning input data and immediately acting 

accordingly (Mazon-Olivo et al., 2018). These processes can be on the cloud or at the edge, 

i.e. devices. Finally, test-bed analysis prior implementation of the network can simulate 

communication rates and possible latency and throughput issues (Stewart et al., 2017).  

Wireless link quality 

A low wireless link quality affects greatly the QoS of an IoT system as it ends in unreliable 

communication between nodes (Klaina et al., 2018). This can be caused by multipath 

propagation (Ruiz-Garcia and Lunadei, 2011), background noise (Mazon-Olivo et al., 

2018), routing problems, e.g. packet collision or limited band width (Jawad et al., 2017), 

or even by harsh environmental conditions, which affect the transceivers and the quality 

of the data transmitted (Elijah et al., 2018). Adequate design and testing of the network 

are crucial for avoiding or reducing this challenge. However, techniques such as channel 

access methods, e.g. TDMA can improve the link quality by reducing packet collisions 

(Temprilho et al., 2018). Regarding testing, the calculation of the signal strengths in real-

time on the base station helps estimating the wireless link quality of a WSN when 

establishing the system (Klaina et al., 2018). Packet loss characterisation can also be used 

to assess the wireless link quality of a connection (Bacco et al., 2018). Additionally, blind 

entity identification can also help estimating the wireless link quality of a network 

(Mukherjee et al., 2018). 

Communication range 

The different wireless communication technologies have very diverse ranges, which are 

to be accounted for when designing the IoT solution, together with other factors such as 

data rate, power consumption, communication protocols or costs (Table 2). In arable 

farming, due to the larger farm sizes and because of the employment of mobile sensors 

and devices on vehicles, this challenge becomes even more critical. Furthermore, relying 

on the approximate communication range of a wireless technology can be misleading, e.g. 

WiFi is often described to have 100 metres range, but a test analysing the packet delivery 

ratio regarding distance to gateway show packet losses at ≥ 60 metres (Giordano et al., 

2018), while using WiField devices 2.6 km range were claimed to be reached in another 

test having still reliable internet connection (Brinkhoff et al., 2017). Testing the 

communication range is therefore important for some settings. In addition to the choice 

of wireless technology, network topology in WSNs, such as mesh topologies can also 

increase the communication range by using nodes to communicate with the central node 

(Ahmed et al., 2018). Reduced range due to obstacles or topography is addressed in the 

propagation losses challenge later. 

Communication protocols 

Differences in communication protocols can cause technical interoperability issues, 

which can lead to connectivity and compatibility issues among the hardware and 

software employed (Stočes et al., 2016). Network protocols are separated into diverse 
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layers forming a protocol stack, where tasks are divided into smaller steps (Suhonen et 

al., 2012). In the infrastructure layer, some wireless standards that define communication 

protocols are commonly used by different wireless technologies, e.g. IEEE 802.15.4, 

which is used by ZigBee or 6LowPAN among others, or 3GPP, which is used by GPRS, LTE 

or 5G among others (see Table 2). In the application layer standards such as HTTP 

(Kaloxylos et al., 2014; Ahmed et al., 2018), MQTT (Ferrández-Pastor et al., 2016; Mazon-

Olivo et al., 2018) or XMPP (Köksal and Tekinerdogan, 2018) are commonly used in IoT 

applications in arable farming. Adequate protocols are especially relevant and 

challenging in vehicle to vehicle communication, and crucial in arable farming. Different 

standards in different layers require a careful planning of the whole IoT solution, as they 

are not always compatible and can also have an effect on the data formats used, or sensors 

and gateways employed (Hernandez-Rojas et al., 2018). Middleware platforms can ease 

the integration of diverse protocols and standards by offering enough abstraction levels 

so that this diversity is effectively managed (O’Grady & O’Hare, 2017; Tuna et al., 2017). 

Edge computing can also ease technical interoperability issues as a local computing layer 

is created to process data  and create control rules before sending the data to the cloud 

(Ferrández-Pastor et al., 2016). 

Network management 

Managing a WSN can imply battery change, software updates, calibration of sensors, 

replacement of devices and similar maintenance activities that can be very time-

consuming. Smart mobile devices, e.g. smart phones, can make remote software updating 

possible, and even be used sometimes for updating some other IoT devices (Ferrández-

Pastor et al., 2016). Using energy efficient devices and communication techniques can 

also be employed to extend the battery life of devices (Jawad et al., 2017). Some sensors 

may require recalibrations with a certain periodicity, which has to be accounted for in 

the projected IoT solution (Kassal et al., 2018). Nonetheless, the management of the 

network is always to be considered when implementing IoT solutions in arable farming, 

where distances and number of devices/nodes can be vast.  

Network size 

WSN configuration schemes have a maximum number of sensor nodes per gateway that 

the network can handle, i.e. the network size. According to the analysis of the reviewed 

literature, network size is being identified more often in the last two years (see Figure 

11), which seems to indicate new possibilities for exploiting the capabilities of WSNs. 

Network size depends on the wireless communication technology employed and can 

affect other parameters, such as data latency or scalability of the network (Balmos et al., 

2016). Network topologies can also influence the network size and vary from simple star 

network (e.g. Hernandez-Rojas et al., 2018) to more advanced multi-hop mesh networks 

(Langendoen et al., 2006; Ahmed et al., 2018) that can increase the network size by using 

network nodes as relays to reach a central node and gateway. Optimisation algorithms 

have been used to find the best spatial distribution of WSN nodes, and therefore to assist 

in the optimisation of its network size (Abdel-basset et al., 2018). 
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Propagation losses 

Even though propagation losses can become a big problem for WSNs in application areas 

like fruit orchards and tree plantations, in arable farming hedges, trees, big rocks or 

sheds, as well as pronounced topography, like hills and valleys, can also block, diffract or 

scatter the signal reducing the communication range and cause data packet losses. 

Additionally, weather conditions can also degrade the wireless connectivity propagation 

of signals (Kamarudin et al., 2016; Jawad et al., 2017; Stewart et al., 2017). To avoid or 

reduce these problems, adequate planning of the location of the sensor nodes, the 

antenna height, the communication protocols and the network topology is necessary. 

Regarding network topologies, mesh network compared to star networks can reduce 

propagation losses as well as increase communication range (Ruiz-Garcia & Lunadei, 

2011; Kamarudin et al., 2016). Moreover, propagation modelling can help planning, 

reduce communication tests and ensure Quality of Service (QoS) for heterogeneous 

wireless networks (Ruiz-Garcia & Lunadei, 2011; Kamarudin et al., 2016; Jawad et al., 

2017; Stewart et al. , 2017; Klaina et al., 2018). 

2.5.4 Application layer challenges 

Data analysis 

Data analysis can in some cases become an important challenge, especially when dealing 

with Big Data, which is data in such amounts, heterogeneity and complexity that it need 

new data management techniques for its analysis (Wolfert et al., 2017). Agricultural Big 

Data is worthless unless it is analysed; however, its analysis can be very challenging 

because of its volume, diversity, and quality (e.g. errors and duplications). This is 

especially challenging in arable farming, where larger amounts of heterogeneous data are 

generated at diverse rates and from very different sources. The literature reviewed show 

an increased identification of this challenges in the last two years compared with the 

previous 6 years (see Figure 11). This evolution might be caused by an increased access 

and use of agricultural Big Data in recent times (Kamilaris et al., 2017; Pham & Stack, 

2018). Techniques for lowering data dimensionality can ease the analysis by applying 

feature reduction models, which reduce data size by eliminating unnecessary data 

dimensions (Sabarina and Priya, 2015). Cloud computing provides the flexibility and 

scalability necessary for Big Data analysis, where numerous users operate 

simultaneously with the large and complex datasets (Gill et al., 2017). Likewise, cloud 

platforms are perfect for storing such large amounts of data, where NoSQL databases can 

store and manage these large unstructured datasets (Kamilaris et al., 2017). The analysis 

of Big Data can potentially be used for example for policy-making, reducing 

environmental negative impact, improve food-safety, as well as improve farm 

management and its production, benefiting the different stakeholders involved 

(Kamilaris, Kartakoullis and Prenafeta-Boldú, 2017; Wolfert et al., 2017). Another facet 

to data analysis is the growing use of machine learning techniques, which are being used 

for exploring Big Data and identifying important factors and their interrelationship that 

affect agricultural production systems like, for example, identifying diverse patterns (e.g. 

crop development stages, weeds or diseases) as part of machine vision systems (Bacco et 
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al., 2018; Reshma & Pillai, 2018). In these cases, the model is built upon a sample of data, 

often called training data, which size and quality directly affects the final model. Choosing 

the adequate approach for building the model with the available data is also essential for 

the success of the IoT solution. 

Data security and privacy 

Even though data security and privacy do not constitute as a high challenge in the 

literature reviewed, they are certainly major concerns for the farmers, i.e. the suppliers 

of data and also end-users of the technology developed, who has little trust in service 

providers’ use of data (Zhang et al., 2017; Jayashankar et al., 2018). Also, data ownership 

needs to be taken into consideration as raw data and processed data in IoT systems have 

different ownership and are accessible by different actors, affecting the necessary 

requirements for data security and privacy (Kaloxylos et al., 2014). Research and 

development focus has been on sensing, processing, controlling and computing, while 

less effort has been devoted to solving security threats, risks and privacy (Tuna et al., 

2017). Other issues like cost effectiveness in for example cloud services are also affecting 

the security of the data, which eventually affects the whole privacy and security of the IoT 

solution, as low-cost services have lower security (Dhinari et al., 2017). Technology 

providers should prioritise data security and privacy in their business models. The 

availability of privacy and security technologies that are dynamic enough to support the 

vast numbers and variety of stakeholders, as well as the complexity of its network, is still 

a major challenge that needs to be overcome (Verdouw, 2016b). Many solutions are being 

employed to reduce data security and privacy issues in each of the IoT layers of the 

system, e.g. encryption algorithms, intrusion detection mechanisms, authentication, 

secure routing protocols, anonymisation, etc. (Tuna et al., 2017; Tzounis et al., 2017). The 

use of middleware platforms are employed to add a security layer between network and 

applications, which can include confidentiality, anonymity and security to the system 

(Serrano et al., 2015; Tuna et al., 2017; Tzounis et al., 2017; Rodriguez et al., 2018). 

Additionally, newer technologies such as blockchain are aiming to solve many of the 

challenges related to privacy and security as well as transparency of the IoT. In 

agriculture, it is mainly being applied in the food supply chain (Bermeo-Almeida et al., 

2018). Blockchain make sense for IoT platforms where large amounts of confidential data 

are handled. 

Data quality and availability 

Some of the challenges previously described have a direct influence on the data quality, 

e.g. propagation losses, wireless link quality, robustness and fault tolerance. Anomalies 

detection and similar methods have been employed to identify faulty data before analysis 

(Lyle et al., 2014; Cadavid et al., 2018). The poor quality of data or its limited availability 

can limit many applications that involve Big Data analytics, modelling and machine 

learning, which can affect or even compromise the success of some IoT solutions (O’Grady 

and O’Hare, 2017; Wolfert et al., 2017; Balducci et al., 2018). In these setups, and 

specifically in arable farming many datasets are integrated from different sources and 

sensors, and the quality or scarcity of some data can become a major hurdle to overcome. 
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Ensuring quality and availability of the data before starting such a project is required. 

Even if it is not always possible to gather all the data necessary to develop models, 

perform correct analytics or train machine learning algorithms, scientific-based 

assumptions (Severino et al., 2018), data augmentation (Diedrichs et al., 2018) or 

simulated data (Wolanin et al., 2019) are used to help or solve the encountered challenge. 

Context-awareness (metadata) 

Context-awareness is an important and distinctive feature of Smart Farming as compared 

to Precision Farming, because it automatically includes descriptive data from e.g. fields, 

sensors, machines, i.e. metadata. Metadata can include information about the date and 

time, node identification number, data of calibration, height and position information, or 

even descriptive data about an experiment objective, field, machinery, crop genotype or 

soil information at the sensor placement (Jayaraman et al., 2015). Metadata about sensor 

nodes of the system are crucial for providing contextual information so that correct data 

analysis can be performed (Jayaraman et al., 2016; Ray, 2017). Context-awareness helps 

computing techniques to decide what data is to be analysed, and consequently easing the 

computations, and the lack of this data complicate data analysis substantially. This is 

especially relevant in arable farming, where the system has to handle both spatial and 

temporal data and make decisions based on the data collected. The use of standards, 

formats and middleware that support metadata is therefore important to have in mind 

during the planning of an IoT solution (Peets et al., 2009; Ray, 2017). Context-awareness 

facilitates new business models and strategies for data analytics and DSS software 

providers. 

2.6 Conclusions and future perspectives 

A literature review of current and foreseeable IoT technologies and systems in arable 

farming was carried out. This has included an overview of the state of the art of IoT 

technologies, an outline of the current and potential applications, and a thorough 

description of the challenges and solutions. From this survey, the role smart mobile 

phones play is highlighted, especially Android devices, which are employed in different 

ways for a wide diversity of applications, due to their availability, connectivity, 

interoperability, programmable ease and computational power. The introduction of 5G 

networks in the near future will enhance the capabilities of smart mobile devices due to 

its enhanced performance. The intelligent management of WSN as well as the capabilities 

of improved communication technologies can also solve some of the challenges IoT-based 

solutions are experiencing. The role of middleware platforms and generic enablers are 

expected to gain acceptance and importance, as they can solve system integration issues 

and interoperability challenges.  

In general, regarding challenges, interoperability is a main challenge throughout the 

whole IoT architecture, where development and/or acceptance of standards and 

protocols is required to ease the issues encountered by many IoT implementations. 
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Furthermore, challenges such as revenue and affordability of IoT systems, the power 

consumption of wireless devices, latency and throughput problems during data transfer, 

as well as the complexity of data analysis, and data privacy and security have been 

identified in the reviewed literature as of high importance, and academic research should 

aim their resources toward solving or reducing these issues. Technology developers need 

to ensure that the solutions create a real benefit for the farmers and are available and 

applicable for both large and small producers. How IoT farm data generated will affect 

the business models of farmers requires further investigation as it is not fully addressed 

in the literature reviewed. The combination of intelligent power efficient systems with 

power harvesting technologies should guarantee longer battery-life of wireless devices. 

Computing data at the edge, i.e. on the devices, as well as lightweight protocols can reduce 

network latency and capacity/throughput problems. The emergence of Big Data is posing 

significant challenges for data analysis, as the complexity and heterogeneity of the huge 

data sets require the application of new analysis techniques than traditionally used. 

Techniques such as lowering data dimensionality, cloud platforms and cloud computing, 

including machine learning algorithms, can help in this area and new innovative solutions 

are expected to be developed. Finally, technology producers have to guarantee privacy 

and security of the data handled throughout all the layers by employing different secure 

methods without compromising the user-friendliness of the solutions employed. 

Middleware platforms can help improving the privacy and security of IoT solutions, and 

techniques such as blockchain can assist with privacy and security problems of IoT 

platforms when dealing with Big Data. 

In the near future, interoperable and service oriented FMIS that are integrated in the 

supply chain with intelligent analytic tools will take over some of the management and 

decision-making tasks of farmers and advisors, which will require training for farmers to 

adapt to this type of FMIS. Key decision support functions include farm financial analysis, 

business processes, or supply chain functions, which will gain importance with Big Data 

analytics. In addition, DSS for vehicle logistics will grow in importance as a way to 

optimise field operations using route planning and sensor-based site-specific 

applications. Finally, the introduction of autonomous vehicles and robotics in arable 

farming in the near future is expected to completely change arable farming operations 

and production praxes requiring fully adopted IoT capabilities.  
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Abstract 
Harvesting operations of cereal crops in a modern farming context 
often involves multiple vehicles, which can lead to inefficiencies 
and increase operational costs if they are not coordinated and used 
appropriately. Large distances from depot to the field, pronounced 
field topographies or visual barriers, e.g. hedges, can limit the 
operator’s decision capabilities in terms of when and where an 
unload is taking place, and consequently make the operation less 
efficient. Moreover, the operation manager, who may be located at 
the farm office, does not have a clear overview of where the 
machines are at any given moment, or how far progressed the 
operation is. Therefore, cereal harvesting is an obvious case for 
utilising the potential of an internet-based harvest fleet logistic 
optimisation system - an application that assists the operators and 
manager in optimising the operation. The system created gives the 
user a live overview of the operation and vehicles involved, it 
assists the operator on where and when to unload, and optimises 
the path in the field to reduce the operational time. The concept 
system is described with focus on its architecture, its data flow and 
communication technologies used. The architecture is divided in 
three layers: sensor layer, communication layer, and application 
layer. The sensor layer consisting of a yield monitor, that measures 
the grain mass flow, and a GNSS receiver. The communication layer 
comprising the gateway. And the application layer covering the 
database, the data analysis and the interfaces. The system is based 
on Bluetooth communication between sensors and gateway and 
3G/4G communication between the gateway and the cloud. 
Android-based mobile devices (tablets) act at the same time as 
gateways and interface. The system is manufacturer independent 
and allows any machine to be connected, so it supports the 
interoperability that many farmers are seeking today. 
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3.1 Introduction 

Reduced time windows of field readiness, i.e. trafficability and workability, force many 

farmers to perform operations hastily and timely non-optimal (Edwards et al., 2016). In 

addition, the competitiveness of the market pressures farmers to sell their harvest at low 

price levels that can endanger their business. There is therefore the need of reducing 

production costs and optimising operation execution times as regard trafficability and 

workability. In terms of the latter, farmers are compelled to increase the number of 

vehicles involved in operations such as harvesting to increase capacity. When multiple 

vehicles take part in harvesting operations of cereal and other grains, it can easily lead to 

inefficiencies as well as increase operational costs, if they are not coordinated 

appropriately. However, management of such tasks can be very difficult as the manager 

does not have a clear real-time overview of the location of the vehicles and when and 

where on- and off-loadings are happening. Furthermore, the decisions of the operators 

are also challenged by factors such as large distances from depot to the field, pronounced 

field topographies or visual barriers, e.g. hedges, especially regarding precise time and 

location of unloading points. Hence, an internet-based harvest fleet logistic optimisation 

system can increase the efficiency of harvesting operations, as well as create 

documentation of yield measurements and operations. Optimising the route plan of a 

single machine can reduce operating distance and consequently time (Edwards et al., 

2017), and these effects increase proportionally the larger the number of vehicles 

involved in the operation (Seyyedhasani and Dvorak, 2017). 

The fast growth of Internet of Things (IoT) technologies in agriculture (Tzounis et al., 

2017; Verdouw, 2016), is allowing the automatic collection, storage and sharing of data, 

which creates new possibilities for machine monitoring and optimisation. Wireless 

tracking of cotton harvesting operations has been performed using RFID tags (Sjolander 

et al., 2011), however, the system was offline and did not transfer the data to the internet, 

nor did it interpret or process the data for posterior yield mapping. Live machine 

monitoring and performance evaluation has been achieved connecting mobile devices by 

Wi-Fi communication (Pfeiffer and Blank, 2015), and even though the system performs 

analytics on the Controller Area Network (CAN) bus data retrieved, which is shared with 

the operator in the cabin, the system does not optimise the operation and relies on the 

decisions of the operator. In a similar manner, yield CAN bus and Global Navigation 

Satellite System (GNSS) data from a combine harvester has been monitored live using 3G 

mobile network and OPC Unified Architecture protocols (Oksanen et al., 2016), but no 

fleet logistics optimisation was done. 

A novel application that assists operators and managers and optimises harvesting 

operations is presented. The harvest fleet logistic optimisation system created gives the 

user a live overview of the operation and vehicles involved, it assists the operator in 

predicting time and location of future unloads, optimises the path in the field to reduce 

the operational time, and documents operation performance, e.g. batches, for further 
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actions and analysis. The system employs Android mobile devices for data processing, for 

communicating the data to the cloud using it as the gateway, and for assisting the 

operator during the harvest employing it as the graphical user interface (GUI). Moreover, 

the system includes a web service for live monitoring of the operation, as well as for 

visualising documented operations from the database, including batches information. 

3.2 System description 

The overall architecture of the system is represented by three layers: sensor layer, 

communication layer, and application layer (Figure 12), following the common IoT 

architecture employed in agriculture (Verdouw, 2016). The sensor layer includes the 

yield monitoring system from the combine harvester and the GNSS receiver. The 

communication layer comprises a Bluetooth CAN bus adaptor that transfers the data to 

the Android device, and the Android device is used as the gateway for transferring the 

information via 3G and 4G networks. Finally, the application layer is represented by the 

server storing the data and the Android mobile device, which computes the data and acts 

as a GUI, and the web service, which also provides a GUI. 

 

Figure 12. IoT architecture of the harvest fleet logistics optimisation system 

The five elements composing the system are: a Bluetooth CAN adaptor, a harvester 

mobile application, a service mobile application, a web manager service and a server 

(Figure 13). The Bluetooth CAN adaptor is a single-board computer connected to the bus 

plug, which reads CAN bus messages and transmits them via Bluetooth with a rate of 1 

message per second. The CAN adaptor retrieves CAN bus data coming from the following 

sensors: a mass flow sensor, i.e. an impact plate attached to a load cell; a grain moisture 

sensor, that measures the capacitance of the grain by passing it through two electrically 

conductive plates; and a GNSS sensor, e.g. the Real-Time Kinematics Global Navigation 

System (RTK-GPS) of the harvester. The harvester mobile application receives the CAN 

bus data via Bluetooth, performs the computations for optimising the route and loading 

points, and guides the operator via the GUI. The calculations optimise the route according 
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to the field boundaries, working width, number of headlands, the behaviour of the 

harvester and the service units, i.e. tractors with grain carts, as well as the yield variations 

measured, so that the optimisation is an on-going process that adapts to any dynamic 

change in parameters. The field boundaries can be drawn in the web manager and 

retrieved by the harvester application in json format, or they can be recorded while 

harvesting the first headland track around the field, which are then stored in the database 

for any future further use. The service mobile application can receive GNSS data via 

Bluetooth from a receiver or use the inbuilt GPS of the mobile device. It also computes the 

route to follow according to the time and location of the unloading points defined by the 

harvester application, which is then communicated to the operator through the GUI. The 

communication between harvester and service applications elapses through the internet 

using 3G/4G mobile networks using HTTP requests. The web manager retrieves the 

position of the vehicles, which is displayed live, and the batch information of the loads, 

i.e. its original location in the field, collected time, its weight and moisture. The final 

component is the server, which stores the data in an SQL-based database (MySQL), which 

can be retrieved from the web service, as well as it handles the message communications 

between harvester and service mobile applications and the web service. The combination 

of CAN adaptor and Android device adapts the combine harvester into a “thing” in an IoT 

context, expanding operational capabilities. 

An important challenge encountered by most IoT based systems is interoperability, not 

only syntactical due to the great diversity of data formats (Tzounis et al., 2017; Brewster 

et al., 2017; Martínez et al., 2016), e.g. standardised (ISOXML, agroXML, geojson, etc.), 

non-standardised (XML, JSON, CSV or other types of TXT), binary (shapefile) or 

proprietary; but also technical interoperability due to the considerable amount of 

different wireless communication technologies and protocols (Tzounis et al., 2017; Ray, 

2017; Oksanen et al., 2016). In the case presented here, the CAN adaptor shares the data 

in a proprietary text file, similar to CSV file format, and the GPS data is shared and stored 

in the server following NMEA 0183 standards, which are both relatively easy to handle 

formats. Regarding technical interoperability, the use of Android smart devices has been 

reported to ease some of these issues, as it can easily be programmed through 

applications development, it can be implemented as IoT gateways for 3G and 4G 

communication, it can include other wireless communication technologies such as 

Bluetooth, WiFi or Near Field Communication, it complies with standards and protocols 

that ease communication, and it can also have in-built GNSS geolocation (Hernandez-

Rojas et al., 2018; Gao and Yao, 2016; Balmos et al., 2016). In addition, they can have a 

considerable computing capacity allowing the computations to be performed on the edge, 

i.e. on the devices employed, in contrast to cloud computing. The popularity of this Linux-

based operating system, developed by Google, makes it a relatively cheap solution for 

easily implementing IoT technologies in agriculture, and are therefore an obvious choice 

for the harvest fleet optimisation system presented here. The android application was 

programmed in Java programming language. 
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Figure 13. Deployment diagram (generated with PlantUML in Confluence) 

3.3 Implementation 

For testing the functionality and communication of the system, a farm in Havndal, in 

Jutland (Denmark) was used during their harvesting operations throughout August of 

2017 (Figure 14 and Figure 15). For the operations, a New Holland CR10.90 combine 

harvester was serviced by two tractors with different sized grain carts with 16 and 18 

tonnes of capacity, respectively. The harvester was equipped with a Samsung Galaxy S2 

tablet running the harvester application, obtaining the yield and GNSS data via the CAN 

bus adaptor. The tractors servicing the harvester were each equipped with a Huawei 

Media Pad tablet running the service application, obtaining their position from a QStarz 

818XT GPS receiver connected to the tablet via Bluetooth. The service application can 

also run with the internal GPS of the Android device; however, it was chosen to use an 

external GPS for higher position accuracy. All Android devices were plugged in to the 

power supply of the vehicle via a USB cable connected through a 12 V adaptor. 

In total, the system was tested in 9 different fields harvesting diverse crops, i.e. rapeseed, 

rye, wheat and grass seed, each of the crops having different operational characteristics, 

e.g. different working speeds and yield volumes. 
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Figure 14. Android tablet in the cabin indicating and monitoring a load transfer into a grain cart. 

 

Figure 15. View of the harvester Android application showing the harvested and non-harvested 

areas, the unloading area, the grain tank capacity status and grain carts statuses. 

3.4 Results and discussion 

The system was able to retrieve position data from the external GPS in the tractors, as 

well as from the RTK-GPS from the harvester through the Bluetooth CAN adaptor, once 

the pairing and connection was established. The Bluetooth CAN adaptor was also able to 

transfer CAN bus data from the harvester to the harvester app without bigger issues than 

the yield sensor calibration, which not being properly calibrated affected the calculations 
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of the unloading points. Some of the crops harvested had more calibration issues than 

others. Even if a proper calibration of the yield sensors is imperative and would be the 

optimal (Griffin et al., 2008; Lyle et al., 2014), many farmers do often not engage in such 

a task; in consequence, since most operators weigh their loads before unloading at the 

storage this measurement could be used as an input for auto-calibrating the harvest fleet 

logistics optimisation system. 

The Android devices gateway functionality performed a correct communication through 

the message handler in the “cloud”, as long as there was access to the internet via the 3G 

and 4G wireless communication technologies. Even though no internet connection 

problems were experienced, many rural areas fail to have a decent mobile network 

(Nakutis et al., 2016), which can limit the functionality of the system. In order to deal with 

internet connection problems, the system stores the last messages and computes 

according to them until internet connection is re-established. However, if the connection 

is not restored in due time, it will start affecting the optimisation, as it cannot update 

position and yield data. A solution could be to use the Bluetooth connection to actualise 

the data, when two or more vehicles are in its communication range, which is of a few 

meters (Jawad et al., 2017). Furthermore, it could also be possible to enhance the system 

with low power wide area wireless technologies that have kilometric ranges, e.g. LoRa or 

SigFox (Sinha et al., 2017). 

The large amounts of data to be communicated in IoT contexts can become a major 

limitation, create latency problems and even occasionally imply high expenses of mobile 

data usage (Jawad et al., 2017; Jayaraman et al., 2016; Tzounis et al., 2017). However, 

frequently large amounts of the data transmitted to the cloud remain underutilised 

(Wolfert et al., 2017), meaning that the data transmitted could be limited. Edge 

computing can ease this challenge as it considerably reduces the amount of data 

transferred, along with easing the storage capabilities of the server (Ferrández-Pastor et 

al., 2016). In addition, the computations can be performed in near real-time, when done 

at the edge. For all these reasons mentioned, the harvest fleet logistics optimisation 

system successfully employs edge computing, being able to adapt rapidly to yield 

variations in the field, changes in operation speed, changes in the transport vehicles 

position or deviations from the optimised route proposed. The data traffic of the mobile 

application is sending approximately 2.9 KB s-1 and receiving 0.9-1.6 KB s-1, after the data 

processing is performed. If there was no processing in the tablet and the full message 

strings where to be sent, the mobile application would be sending approximately 6.8 KB 

s-1 and receiving 2.4 KB s-1, after office testing was made. A reduction of 57.35% of sent 

data was achieved. Furthermore, computing at device level not only reduces the amount 

of data transferred, but also considerably reduces the lag-time if the computations were 

made in the cloud, achieving near real-time optimisation. The downstream data to be 

retrieved from the server is minimised to the minimum for the system to function, i.e. the 

messages include uniquely information of the current status of the vehicle, with a rate of 

one message per second when the machine is moving and one message every five seconds 

when the machine is still. The stored data in the server was accessible during the 
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operation, and after the operation was finalised, having as well available batch 

information of the different crops harvested. 

Power consumption of the sensors and devices employed is often an important challenge 

when implementing IoT in agriculture (Ray, 2017; Tzounis et al., 2017; Verdouw, 2016), 

due to their reduced battery life. Nevertheless, in the case presented here, power 

consumption is not problematic as sensors and Android devices are plugged to the power 

supply of the vehicle. 

A final but still very relevant issue to be mentioned is privacy and security of the data 

stored and transferred. The use of authentication protocols, signature and encryption 

schemes are necessary for ensuring data privacy and security (Tuna et al., 2017; Ranjan 

and Hussain, 2016; Oksanen et al., 2016; Tzounis et al., 2017). The system includes a 

username/password authentication procedure in the web service, and it relies on the 

inherent security of the tablets. Password encryption is used to reduce potential misuse 

as well as undesired interferences of third parties. Further work on protecting and 

securing data in the devices, the storage and communication of the system needs to be 

applied. 

3.5 Conclusions 

A novel application that assists and optimises harvesting operations was presented. The 

implemented harvest fleet logistic optimisation system provides a live monitoring of the 

operation and vehicles involved, and assists the operators with information about 

unloading time and location, as well as optimising the route, and documenting the 

operation. The system employs Android mobile devices due to their flexibility and 

scalability for overcoming challenges such as interoperability. The Android devices 

fulfilled the following functions: data retrieving, processing and data transferring, as well 

as assisting the operator through a GUI. Moreover, the system includes a web service for 

live monitoring of the operation, as well as for visualising documented operations from 

the database. 

The harvest fleet logistics optimisation system could easily access the data from the CAN 

bus through the Bluetooth CAN adaptor, including yield monitor and GNSS data, as well 

as communicate the position information of the transport units assisting the combine 

harvester. However, the adequate calibration of the yield monitor is essential, as it affects 

the prediction of the load transferring points. The use of 3G and 4G mobile networks for 

communicating the data worked adequately but can present a major impediment in rural 

areas without a stable mobile network. Besides, the server stored the harvest operation 

data in the database, which could be monitored live or retrieved later from the database. 

The amount of data communicated through the internet was minimal to reduce latency 

problems and ensure the proper functionality of the system. 
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Abstract 
Soil compaction is a major problem in arable farming mainly 
caused by the intensive traffic of heavy machinery. It affects 
negatively soil and crop development. Even though the first 
wheeling is considered the most damaging, repeated traffic 
deteriorates further the soil and subsoil even up to irreversible 
conditions. Intelligent in-field traffic planning in the form of 
optimised route planning is one key option to mitigate soil 
compaction. Currently, no comprehensive evaluation of the 
benefits of such methods exists.  In this paper, a harvest logistics 
optimisation system was employed to evaluate the effectiveness of 
optimised route planning in reducing traffic by generating 
simulated operational data and comparing it to a set of six recorded 
fields ranging in size (2-21 ha) and shape. For the evaluation, 
simulated and recorded data for each 12 X 12 m grid cell within the 
fields were compared by analysing three variables, i.e. traffic 
occurrences, accumulated traffic load and maximum traffic load per 
grid cell. The results showed a reduction of the total number of 
traffic occurrences with a field size weighted mean of relative 
differences of 9.8%. A reduction of 5.6% for the accumulated traffic 
load, and an increase of 4.0% for the maximum traffic load. 
Repeated traffic was reduced in four of the six fields. Even though 
optimised route planning is not directly intended for traffic 
reduction, it can notably contribute to such mitigation efforts and 
adds an extra element to the overall farm strategy for soil 
compaction mitigation. 
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4.1 Introduction 

Over the last decades, the industrialisation and intensification of agriculture have 

intensely changed arable farming (Bochtis and Sørensen, 2014). The machinery 

operating in the fields are increasing their capacity as a response to the necessity of 

producing more with lower unit production costs. This higher capacity inevitably comes 

with higher weight, which can result in long-term sub-soil compaction problems 

(Schjønning et al., 2015; Keller et al., 2019). This world-wide tendency is leading to 

poorer physical soil properties due to compaction within many arable fields that also has 

negative effects on crops, e.g. limiting the development of the roots (Bengough et al., 

2011; Lipiec et al., 2012), affecting negatively the mineralisation of soil organic carbon 

and nitrogen (Neve and Hofman, 2000), and eventually cause yield decrease (Alblas et al., 

1994; Lipiec and Hatano, 2003; Chen and Weil, 2011; Tim Chamen et al., 2015; Schjønning 

et al., 2016; Obour, Keller, Lamandé, et al., 2019), as well as the need for increased energy 

input in tilling compacted soils due to higher penetration resistance (Tim Chamen et al., 

2015; Schjønning et al., 2016). Apart from these negative effects, soil compaction has 

negative consequences on the environment too in terms of e.g. increased risk of nitrogen 

leaching, nitrous oxide emissions (Vermeulen and Mosquera, 2009; Tim Chamen et al., 

2015) or increased risk of erosion (Braunack and Dexter, 1989; Bogunovic et al., 2018). 

In addition to heavy loads, the intensity of traffic in the field is also a major cause to soil 

compaction problems (Arvidsson and Håkansson, 1991; Håkansson and Reeder, 1994; 

Keller et al., 2004; Hamza and Anderson, 2005; Seehusen et al., 2019). Traffic intensity is 

also in literature often referred to as wheeling intensity. Traffic intensity has been defined 

as the product of the weight of a machine and the distance driven per hectare (Arvidsson 

and Håkansson, 1991). Even if the first wheeling is considered most harmful (Bakker and 

Davis, 1995), repeated traffic causes additional stress and leads to accumulative plastic 

deformation (Bakker and Davis, 1995; Balbuena et al., 2000; Horn, Way and Rostek, 2003; 

Schjønning et al., 2016; Pulido-moncada, Munkholm and Schjønning, 2019). Repeated 

wheeling with lighter loads may even result in more harmful effects than a single heavy-

loaded pass (Schjønning et al., 2016; Seehusen et al., 2019). The problems associated with 

soil and sub-soil compaction evidence the need for mitigation strategies caused by heavy 

and reiterative traffic in the field. 

Various soil compaction mitigation strategies have been described in literature in regards 

to equipment, soil management, crops and field operations (Alakukku et al., 2003; 

Chamen et al., 2003; Keller and Arvidsson, 2004; Hamza and Anderson, 2005; Batey, 

2009; Tim Chamen et al., 2015). Equipment solutions to mitigate compaction are on-land 

ploughing (Munkholm, Schjønning and Rüegg, 2005), deep ripping (Schneider et al., 

2017), reduced wheel load by the use of tandem wheels, tandem axles and  regulation of 

tyre inflation pressure (Keller and Arvidsson, 2004; Tim Chamen et al., 2015). Soil 

management practices to limit soil compaction includes modelling soil readiness for 

assisting farm managers in scheduling when to operate in their fields (G. Edwards et al., 

2016; Obour, Keller, Jensen, et al., 2019), and the use of well-designed drainage systems 
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to reduce the water content and consequently increase the trafficability of the soil 

(Chamen et al., 2003). Cover crops have also been found to be able to improve soil 

hydraulic properties and thereby reduce soil compaction problems (Çerçioğlu et al., 

2019). Finally, preventive field management practices can include controlled traffic 

farming (McHugh, Tullberg and Freebairn, 2009; Gasso et al., 2013), or no-tillage (Renato 

Nunes et al., 2018). In addition, reducing traffic intensity in heavy-loaded operations, 

such as harvesting, by the use of in-field optimised route planning (ORP) has been pointed 

out as a solution to reduce soil compaction problems (Bochtis, Sørensen and Green, 2012; 

Edwards et al., 2017; Gorter, 2019). Bochtis et al. (2012) presented a decision support 

system (DSS) that used soil physical and chemical properties to estimate the potential 

risk of soil compaction and accordingly optimise the route of slurry application. The 

system was tested in one field and was able to reduce the risk factor by 61% compared 

to recorded data. Gorter (2019) presented an ORP method for capacitated harvesting 

operations that takes into account weight variations and soil compaction susceptibility 

based on infield wet areas. The method was tested in three fields and optimised the path 

of the grain cart according to its weight and the field areas more vulnerable to soil 

compaction. While the DSSs presented by Bochtis et al. (2012) and (Gorter, 2019) 

optimise in regards to soil compaction reduction and require field data collection prior 

to the operation to estimate the potential risk, the system employed in Edwards et al., 

(2017) reduced the travelled distance by the use of an ORP tool in neutral material flow 

operations, which reduced traffic intensity, especially in the headland area.  

In this paper, a harvest logistics fleet optimisation tool, i.e. an ORP tool for harvesting 

operations (Villa-Henriksen et al., 2018), was used to evaluate the effectiveness of ORP to 

reduce repeated traffic, heavy loads and accumulated traffic load, and thus the risk of soil 

compaction. The harvest fleet logistics system coordinate plans and optimises the route 

of all vehicles, so that the overall harvest time is minimised, as well as the travelled in-

field distance is reduced. The ORP system does not require field data collection before the 

operation and addresses coupled operations with more than one vehicle carrying loads 

with varying weights, differing from Edwards et al., (2017) which only involves one 

vehicle with a constant weight.  

It is hypothesised that ORP can reduce the in-field traffic, and consequently ORP can be 

employed as a complementary soil compaction mitigation strategy in arable farming. 

4.2 Material and methods  

An ORP tool for harvest operations (Villa-Henriksen et al., 2018) was employed for 

optimising the operation in a set of recorded fields. The fields belonged to Lisbjerregård, 

a commercial farm located around Havndal in Jutland, Denmark (56.6530° N, 10.197475° 

E), which fields were harvested between the 8th and 14th of August of 2017. The position 

of all vehicles involved was recorded using GNSS loggers QSTARZ Travel Recorder XT, 

which use GPS satellites with a frequency of 1 Hz. In total six fields were fully recorded 
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for the evaluation (Figure 16). The fields varied in size (2-21 ha) and shape and may be 

considered typical for Danish arable fields (Caspersen and Andersen, 2016; Enemark and 

Sørensen, 2016). Data from more fields were also recorded but had to be discarded 

because they either were incomplete or partially harvested at different times making 

them incomparable to the optimised solution.  

 

Figure 16. Raw position data of the recorded harvest operations used in the analysis. 

The logged field harvest operations were analysed with the aim of having the same 

parameters in the computer optimised solution as in the recorded operations (Table 4). 

The total yield per field was calculated based on the CAN bus grain flow data from the 

harvester. The harvester was calibrated for a bulk density of the crop of 0.56 kg m-3, which 

was used to estimate grain levels in harvester tank and grain carts. The vehicle speed 

parameters used in the simulations were 1.2 m s-1 for working speed, i.e. speed during 

harvesting, and 1.9 m s-1 for non-working speeds. 

Table 4. Parameters used in the computer simulations for each of the fields 
Field Harvester Grain cart 

Field 
ID 

Size 
(ha) 

No. 
headlands 

Total crop 
output 
(Mg) 

Working 
width (m) 

Harvester 
Tank volume 
(m3) 

No. 
trailers 

Volume 
(m3) 

Time out 
of field 
(s) 

A 21 3 82.54 12 14.5 1 31 1367 
B 9.4 2 39.14 12 14.5 1 26 1025 
C 1.6 2 6.61 12 14.5 1 26 0 
D 3.1 2 10.72 12 14.5 1 26 0 
E 2 2 6.02 12 14.5 1 26 0 
F 12.7 3 51.65 12 14.5 1 26 931 

 

The ORP tool employed for the harvest operations coordinate plans and optimises the 

route of harvester and grain carts, so that the overall harvest time is optimised, as well as 

the travelled distance is minimised. The system ensures the grain carts will receive the 

loads at the right time and at the right spot. The harvesting of the set of fields was 

computer simulated with the input parameters registered (Table 4). The harvester 

weight was 28982 kg. and the grain cart weight including the tractor was 16320 kg. The 
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app-based version of the ORP fleet harvest tool has been described in Villa-Henriksen et 

al. (2018). 

The position data for the recorded operations was processed before the evaluation 

analysis by removing all data points placed outside of the field polygon boundaries as 

well as points outside of the time range in which the fields were harvested. It was 

observed during the analysis that Field A lacked data points from the grain cart due to 

issues in the setup of the GPS logger. In order to calculate the traffic of Field A, the missing 

position data were estimated by interpolation adding one data point per missing 

timestamp in a straight line within the existing adjacent data points. 

For the evaluation, the fields were divided into a grid where the gridline spacing was 

equal to the working width of the harvester, i.e. 12 metres, and the orientation of the grid 

followed the angle of the working direction in the main part of the field. For each of the 

grid cells three variables were measured, i.e. traffic occurrences, accumulated traffic load 

per grid cell and maximum traffic load per grid cell. Traffic occurrences refers to the 

number of times any vehicle has driven on a grid cell and accounts for repeated traffic. 

Accumulated traffic load per grid cell represents the sum of the weights of vehicles 

passing the grid cell including the harvested grain in their tank or grain cart. Finally, the 

maximum traffic load per grid cell expressed the heaviest vehicle including grain content 

that has passed over the grid cell. This last variable was analysed in order to address the 

possible effects on load from using ORP. The traffic occurrences distributed across field 

grid cells were displayed in map form and in bar chart of the percentage of trafficked grid 

cells. 

For each of the fields the total sum, the mean and standard deviations, the median, as well 

as the maximum values for each of the three variables were calculated. Additionally, the 

relative difference (Eq. 1) for each field and variable was also calculated, i.e. the difference 

between recorded (xr) and simulated (xs) total traffic occurrences per field divided by the 

arithmetic mean. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑥𝑟, 𝑥𝑠) =
𝑥𝑟−𝑥𝑠

x̅
    Eq.1 

Finally, the field size weighted arithmetic mean of the relative differences for each of the 

variables were calculated. The field size was based on the number of grid cells attributed 

to each field. 

The harvesting times for the ORP tool and recorded operations are not included in this 

study because they do not affect the traffic variables studied and would require a 

thorough analysis of recorded speeds and accelerations as well as to include them 

cautiously in the simulation to achieve an equitable comparison, which is not in the scope 

of the article. 

The correlation between the accumulated traffic load and traffic occurrences was also 

studied to observe its dependency in order to address the possibility of estimating 
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accumulated weight based only on traffic occurrences. The correlation analysis was 

divided into the two different grain cart volumes employed in the harvest operations, i.e. 

31 m-3 used in Field A, and 26 m-3 in the rest of fields (Table 4). 

The processing and analysis were performed using targeted code in Java and Python 

programming languages and the spatial data was visualised employing QGIS v. 2.14. 

4.3 Results 

The harvest logistics tool reduced the total number of traffic occurrences per grid cell in 

the set of fields with a field size weighted mean of the relative differences of 9.8%, or 

12.9% when Field F is excluded. The relative difference of total traffic occurrences ranged 

from 0.7% to 50.5%. The median of the simulated harvest was reduced from 2 to 1 traffic 

occurrence per grid cell in all fields, excluding Field E and F where it was equal. The 

results for maximum traffic load per grid cell were higher for all fields for the ORP tool 

with a field size weighted mean of relative differences of -4.0%, and the relative 

differences ranging from -1.9% to -5.1%. The results for the ORP tool for the accumulated 

traffic load per grid cell were reduced in 5 of the fields and increased in one of them, 

having a field size weighted mean of relative differences of 5.6%, and the relative 

difference ranging from -4.3% to 39.8%. The medians of the accumulated weight per grid 

cell was importantly reduced in Fields A, B, C and D, while for Fields E and F was slightly 

higher. The complete results for traffic occurrences (Table 5), maximum traffic load per 

grid cell (Table 6) and accumulated traffic load (Table 7) are collected each in a dedicated 

table. A bar chart for each field with the distribution of traffic occurrences for the 

recorded and simulated data is shown in Figure 18. In the figure, it is observed that the 

simulated data tends to be more positively skewed than the recorded data, meaning that 

there were more grid cells being travelled on one or two times and less with higher traffic 

occurrences. The percentage of grid cells with more than one traffic occurrence was 

reduced in all but two fields, i.e. Field E and Field F. The field traffic maps for recorded 

and simulated data are presented in Figure 17, where it is visualised in colour-scale the 

lighter and heavier trafficked areas. 

Table 5. Traffic occurrences 

Field Recorded Simulated 
Relative 

difference 

ID 
Area 
(ha) 

Grid 
cells 

Total 
Mean 
per grid 
cell (SD) 

Median Max Total 
Mean 
per grid 
cell (SD) 

Median Max (%) 

A 21 1501 3533 2.4 (2.2) 2 16 3182 2.2 (1.6) 1 16 10.5 
B 9.4 685 1381 2.1 (1.3) 2 9 1321 2.0 (1.4) 1 9 4.4 
C 1.6 115 263 2.3 (1.0) 2 6 157 1.4 (1.0) 1 6 50.5 
D 3.1 227 551 2.4 (1.5) 2 8 358 1.6 (1.1) 1 8 42.5 
E 2 152 245 1.6 (1.1) 1 7 240 1.6 (0.9) 1 8 2.1 
F 12.7 879 1785 2.0 (1.4) 2 9 1774 2.0 (1.3) 2 10 0.7 
Field size weighted arithmetic mean 9.8 
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Table 6. Maximum traffic load (Mg) 

Field Recorded Simulated 
Relative 

difference 

ID 
Area 
(ha) 

Grid 
cells 

Total 
Mean per 
grid cell 
(SD) 

Median Max Total 
Mean per 
grid cell 
(SD) 

Median Max (%) 

A 21 1501 47432.3 31.6 (2.1) 31.7 36.4 49617.4 33.5 (2.2) 33.8 37.2 -4.5 
B 9.4 685 21653.5 32.2 (2.2) 31.8 36.8 22124.9 33.0 (2.1) 32.9 37.1 -2.2 
C 1.6 115 3488.1 30.3 (0.9) 30.5 31.9 3663.1 32.4 (1.9) 32.5 35.4 -4.9 
D 3.1 227 7065.1 31.1 (2.7) 31.6 34.1 7324.9 32.4 (2.3) 31.8 36.9 -3.6 
E 2 152 4800.3 32.0 (3.0) 32.4 35.0 4893.9 32.2 (1.8) 32.2 35.2 -1.9 
F 12.7 879 27677.7 31.5 (2.4) 31.7 35.7 29116.7 33.4 (2.1) 33.4 37.2 -5.1 
Field size weighted arithmetic mean -4.0 

 

 

Table 7. Accumulated traffic load (Mg) 

Field Recorded Simulated 
Relative 

difference 

ID 
Area 
(ha) 

Grid 
cells 

Total 
Mean per 
grid cell 
(SD) 

Median Max Total 
Mean per 
grid cell 
(SD) 

Median Max (%) 

A 21 1501 101516.1 
67.6 
(60.9) 

48.2 431.8 95406.1 
64.3 
(45.3) 

36.9 430.6 6.2 

B 9.4 685 40723.3 
60.6 
(38.5) 

53.3 254.5 40098.4 
59.8 
(40.4) 

36.3 254.8 1.6 

C 1.6 115 7056.6 
61.4 
(27.3) 

53.1 172.4 4715.2 
41.7 
(24.2) 

33.0 165.7 39.8 

D 3.1 227 15265.8 
67.3 
(39.5) 

57.5 229.8 10938.7 
48.4 
(31.2) 

35.0 228.0 33.0 

E 2 152 7592.0 
50.6 
(33.5) 

33.9 185.5 7017.6 
46.2 
(24.3) 

34.7 224.5 7.9 

F 12.7 879 50734.5 
57.7 
(36.5) 

47.6 261.3 52967.1 
60.7 
(35.1) 

52.7 252.1 -4.3 

Field size weighted arithmetic mean 5.6 

 

 

The results indicate a high correlation between the accumulated traffic load and traffic 

occurrences for both grain cart volumes employed in the harvest (Figure 19). The 

coefficient of determination (R2) for the bigger grain cart was 0.994 for the recorded field 

and 0.988 for the simulated field. The coefficient of determination for the smaller grain 

cart 0.983 for the recorded fields and 0.986 for the simulated fields. 
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Figure 17. Traffic occurrence maps of the fields studied for the recorded and simulated harvest 

operations. 
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Figure 18. Bar charts of the set of fields comparing the distribution in percentage of the traffic 

occurrences for the recorded and simulated harvest operations. 
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Figure 19. Correlation between accumulated traffic load and traffic occurrences for the two sizes 

of grain carts employed. 

4.4 Discussion 

4.4.1 Repeated traffic 

The ORP tool for harvest logistics was able to provide an optimised solution for the whole 

set of fields recorded, which were of different shapes and areas ranging from 1.6 to 21 

hectares. One of the fields, i.e. Field F, included an obstacle in the middle of the main 

working area. The ORP tool aims to reduce the overall operational time of a harvest 

operation and reduce as well the travelled distance in the field as a second goal. This 

means that in certain cases, the harvester may travel a longer distance, e.g. when the 

model predicts that a grain cart is delayed to receive a load it makes the harvester leap 

over adjacent rows and harvest closer to the gate so that the overall operational time is 

reduced. However, as the tool coordinates all vehicles involved in the operation so that 

the grain carts are always directed to an unloading point at the right time and location, it 

reduces in that manner unnecessary infield traffic. Consequently, even though the model 

is not intended for reducing the in-field traffic, the optimised solution reduced the traffic 

occurrences in all fields with a field size weighted mean of the relative differences of 9.8% 

(Table 5). Nevertheless, in field F, the relative difference was neglectable, i.e. 0.7%. Field 

F was also the only case where the ORP tool could not obtain a median value per grid cell 

below 2 traffic occurrences. This field performed also worse for the optimised solution in 

regards to accumulated traffic load compared to the rest of fields where the simulation 

reduced the accumulated weight. In Field F (Figure 17), as the ORP tool optimises the 
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overall harvest time, the optimised solution provided two different driving directions 

separated by the elongated obstacle in the middle of the field. One of the directions was 

parallel to the obstacle while the other was not, meaning additional turns by its side and 

consequently more traffic occurrences. The ORP tool would require some intrinsic 

changes in the optimisation algorithms to truly aim for in-field traffic reduction in any 

type of field. If field F is excluded, the traffic occurrences would be reduced by a field size 

weighted mean of the relative differences of 12.9% when employing the ORP tool. 

The ORP tool performed particularly well in Field C and Field D (Table 5 and Figure 18), 

which had very small field areas, with relative differences of 50.5% and 42.5% 

respectively. In these fields, as well as in Field E, the total yield output was smaller than 

the grain cart size, implying that the harvester had to empty its grain tank two times at 

most (Table 4). The recorded data shows that the grain carts travelled unnecessary 

distances as they did not know how to drive strategically in the field to meet the harvester 

at the right time and place, resulting in additional traffic. In the simulated operation, the 

grain carts minimised their traffic by waiting by the gate until they timely drove to receive 

an unload. This characteristic of the ORP tool reduces significantly the traffic occurrences 

produced by the grain carts, and in general the overall in-field traffic in harvest 

operations. Considering that the harvester has to traverse the whole field, i.e. at least one 

time per grid cell, a field size weighted mean of relative differences of 9.8% is an 

important reduction, especially taking into consideration the median values for the 

simulated data (Table 5), in which four of them were reduced from 2 to 1 traffic 

occurrences per grid cell. 

The percentage of grid cells with repeated traffic, i.e. with more than one traffic 

occurrence, is important for evaluating the effectiveness of an ORP tool to reduce 

repeated traffic. The simulated harvest was able to reduce repeated traffic in four of the 

six fields (Figure 18). The reduction was especially important in Field C and D and did not 

occur for Field E and F. In the recorded data, all the fields excluding Field E had repeated 

traffic in more than 50% of the grid cells, meaning that more than half of the field surface 

is prone to experience the negative consequences of repeated traffic. Any reduction in the 

percentage of grid cells with repeated traffic will avoid its negative effects in those parts 

of the field. The simulated data had repeated traffic in less than 50% of the grid cells in 

five of the six fields. Even though Fields E and F had overall traffic reduced (Table 5), they 

had more repeated traffic than the recorded data (Figure 18). In Field F this was caused 

by the orientation of the rows in relation to the obstacle in the middle of the field, as 

previously discussed. In Field E it was caused by the optimisation calculating an 

unloading point at the opposite edge of the field in regards to the gate, obliging the grain 

cart to drive a longer path than in the recorded data. As the ORP tool aims at reducing the 

overall operational time, this issue may occur in some smaller fields with one in-field 

unload. 

In the set of fields studied, field size does not have a relation to repeated traffic reduction, 

as the unpredictable human factor has very much influence on the traffic in the recorded 
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fields. With a larger dataset it would be expected to have in average a higher reduction 

for larger fields, than for smaller. This is mainly because the ORP tool reduces ineffective 

travelled distances by the grain carts and the number of unloads is minimised, thus 

having more effect in the reduction of repeated traffic. Field shape may also influence the 

reduction of repeated traffic as more complex fields can become more challenging for the 

operators to drive optimally, so the ORP tool could potentially be more effective. 

However, in some cases the ORP tool may optimise harvest time reduction in a way that 

does not benefit traffic reduction, e.g. in the case of Field F. Larger datasets would be 

required to analyse the relation between traffic and field size and shape, as well as the 

capability of an ORP tool to reduce traffic in any type of field.  

The results indicate a high correlation between the accumulated traffic load and traffic 

occurrences (Figure 19). The coefficient of determination (R2) for the bigger and smaller 

grain carts and for both recorded and simulated harvesting operations rounded 0.99, 

which shows a very high correlation. Consequently, in this specific case, it also indicates 

that traffic occurrences do not require weight as a parameter in the calculations in order 

to predict the traffic occurrences. The cause for this correlation is twofold: the high 

weight of the harvester, which has to drive over each grid cell of the field, and the 

relatively small weight differences between full (8 Mg) or empty tanks in regards to the 

harvester weight (29 Mg). Additionally, as the tractor with a full grain cart sums around 

34 Mg, which is very close to the harvester weight with a full load, the relation to traffic 

occurrences becomes apparent. 

4.4.2 Heavy loads 

Heavy load leads to subsoil compaction (Håkansson, Voorhees and Riley, 1988; Keller et 

al., 2019). Consequently, the maximum traffic load per grid cell was included in this study. 

The results show that the maximum traffic load per grid cell was higher for the ORP than 

for the recorded data, mainly because the ORP model filled the grain cart always to 100%, 

which was not the case in the recorded data. The results show a field size weighted mean 

of relative differences of -4.0% for the maximum traffic load per grid cell. This could be 

caused by yield sensor calibration issues or because the operators had to guess on the go 

when a tank or grain cart was really full. Nonetheless, looking closer to the results, the 

maximum traffic load per grid cell had mean values around 30-33 Mg with standard 

deviations of 1-3 Mg (Table 6), and the differences between average recorded and 

simulated data were in fact in all cases smaller than 2 Mg per vehicle. This suggests that 

for a given fleet of vehicles for grain harvest, ORP does not significantly increase the risk 

of soil compaction due to heavy traffic load but significantly reduces repeated traffic as 

previously stated. 

The concept of traffic intensity described by Arvidsson & Håkansson (1991) refers to the 

product of the weight of a machine and the driven distance per hectare (Mg km ha-1), 

which includes heavy loads and in-field travelled distance in one variable, and can cover 

a whole season of field operations. The in-field travelled distance is related to the 

repeated traffic. The concept of traffic intensity was employed by Gorter (2019) for 
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estimating the reduction of travelled distances by heavy loaded machinery in wet areas. 

In this study, a different approach was chosen, which distinguishes heavy loads from 

repeated traffic, and has a much finer spatial resolution than a hectare, i.e. squares of 12 

meters sides.  

Nonetheless, the method used to calculate traffic occurrences and load may not provide 

the full picture, as the weight is not equally distributed inside the grid cell. Furthermore, 

equal traffic loads per grid cell for different vehicles can translate into very different 

induced stress on the soil. The weight distribution is dependent on the axel load for each 

wheel along with the contact area of the wheel (Keller and Arvidsson, 2004; Hamza and 

Anderson, 2005; Seehusen et al., 2019). The axel load is subjected to mechanical design 

of the vehicle, which can distribute the weight differently between for example front and 

back wheels. The contact area is dependent on the inflation pressure and the tyre design. 

Due to most of these parameters were not known during the harvest operations, the focus 

has been set on traffic occurrences per grid cell, knowing that repeated traffic can be more 

harmful to soil structure than single wheeling with high load (Seehusen et al., 2019). 

Modelling tools such as Terranimo (Stettler et al., 2014), FRIDA (Schjønning et al., 2008) 

as well as other scientific models (e.g. Thomas Keller & Arvidsson, 2016) can be employed 

to simulate and study the wheel stress induced to the soil and the compaction for 

different soil types and conditions. 

4.4.3 Accumulated traffic 

Even if the first wheeling is considered most harmful, repeated traffic results in 

accumulated plastic soil deformation and compaction (Bakker and Davis, 1995; Horn, 

Way and Rostek, 2003; Seehusen et al., 2019), with significant yield penalties compared 

to single-pass traffic (Arvidsson and Håkansson, 1991; Schjønning et al., 2016), and may 

lead to subsoil compaction with long term persistence (Håkansson, Voorhees and Riley, 

1988; Balbuena et al., 2000; Pulido-moncada, Munkholm and Schjønning, 2019). As in 

harvesting operations the first wheeling is unavoidable, since the harvester needs to 

harvest the whole field, the reduction of additional traffic is central in these types of 

operations. This is particularly relevant when the soil conditions are not ideal. 

Considering the constrained time frames operators are forced to work on due to weather 

conditions or farm scheduling limitations, it obliges them to drive under suboptimal soil 

conditions increasing soil compaction issues (Orfanou et al., 2013; Edwards, 2015; G. 

Edwards et al., 2016). 

The negative effects of accumulated traffic in soil compaction are not only dependent on 

the soil conditions, but as discussed earlier, also on the weight distribution and wheel 

contact area of the different vehicles, which were unknown in this study. Additionally, the 

differences in axle width, wheel number and distribution, as well as the driving patterns 

inside a grid cell of the harvester and grain carts make the negative effects in soil 

compaction of accumulated traffic difficult to estimate. 
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The accumulated traffic load per grid cell was reduced in most of the fields studied 

resulting in a field size weighted mean of relative differences of 5.6% (Table 7). As 

described previously, the accumulated load per grid cell is directly correlated to the 

traffic occurrences, which makes the count of traffic occurrences a straightforward 

concept to account for repeated traffic and could potentially be used for estimating the 

approximate effects of accumulated traffic load in localised areas. 

From the traffic maps (Figure 17) it is clear that the grain carts in the simulated data 

drove across the field making the shortest connection from or to an unloading event. This 

happens also sometimes in real life but may not be the ideal situation since the driving 

direction is not respected in the main field area, and is unacceptable in controlled traffic 

farming. 

4.4.4 Applicability of the ORP tool 

Soil compaction induced by vehicle traffic may not be possible to eliminate entirely, but 

it can be reduced by employing intelligent tools that can manage vehicle traffic (Raper, 

2005). ORP besides optimising the operation in time (Bochtis, Sørensen and Green, 2012; 

Bochtis, Sørensen and Busato, 2014; Edwards et al., 2017), it does also reduce vehicle 

traffic in the set of fields studied in this paper. ORP can be therefore considered a soil 

mitigation strategy that in combination with other strategies can reduce the degradation 

of arable soils across the globe. ORP does not require major investments or changes in 

the machinery fleet of the farm, as it can be without difficulty employed through smart 

technologies (Villa-Henriksen et al., 2018). 

In order to minimise further soil compaction, ORP for capacitated operations can be 

targeted include the wheel load carrying capacity of the soil in a field in the route 

planning. In that manner, the vehicles are directed to avoid the wettest areas of a field 

when carrying heavy loads. ORP that targets minimising risk for soil compaction have 

been proposed for slurry application (Bochtis, Sørensen and Green, 2012) as well as for 

root crop harvesting operations (Gorter, 2019). The ORP tool employed in this study does 

not require any data collection prior to the operation and can reduce the traffic 

occurrences in the field, but does not consider high risk areas, which may cause soil 

compaction problems. Bochtis et al., (2012) altered the driving direction of the operation 

according to an electrical conductivity map of the field that addressed the risk of soil 

compaction. The map was generated from field measurements prior to the operation and 

based on it the ORP system directed the tractor in accordance to its load and the soil risk 

factor. Gorter (2019) aimed to reduce the distance of heavy loaded grain carts in fictive 

wet areas for high yielding root crops based on a capacitated arc routing problem with a 

Tabu search algorithm. ORP with special attention to soil compaction risk requires 

previous mapping based on either in-field measurements or on modelling tools. In that 

manner, ORP can significantly reduce soil compaction across the field in general, and 

specifically in high risk areas. However, altering the route according to a wheel load 

carrying capacity map may imply more repeated traffic in certain areas and more 

distance travelled by the vehicles. Further research should address these issues, 
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optimising the operation in time but altering the route according to a carrying capacity 

map and the load of the vehicles. 

4.5 Conclusion  

A harvest logistics fleet optimisation system was employed to simulate traffic 

occurrences for a set of fields as well as compared it to the non-optimised recorded 

harvest traffic occurrences The results show that the ORP tool was able to reduce traffic 

occurrences with a field size weighted mean of relative differences of 9.8% and reducing 

repeated traffic in four of the six fields studied. The tool performed better in some fields 

than others, but for all cases, the tool managed to decrease he traffic occurrences. As the 

tool coordinates the vehicles for timely unloading events, it avoids unnecessary traffic 

from especially the grain carts, consequently reducing the total traffic in the field. Even 

though ORP is not directly intended for in-field traffic reduction, it can accomplish this 

task and adds an extra element to the farm strategy for reducing soil compaction. It can 

be concluded that soil compaction resulting from vehicle traffic can potentially be 

reduced by the use of optimised route planning, especially when soil conditions are not 

ideal. 
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Abstract 
Grain price differences due to protein content can have economic 
effects on the farm as well as environmental effects when 
alternative protein sources are imported. Grain protein variability 
can vary from year to year due to environmental factors and can be 
addressed by site-specific management practices. Alternatively, it 
can be addressed at harvest time by selective harvest. Agricultural 
autonomous robots can accurately follow alternative harvesting 
routes that are subject to grain quality maps, making them suitable 
choices for selective harvest. This study addresses therefore the 
potential revenue of selective harvest performed by the route 
planner of an autonomous field robot. The harvest capacity and 
potential economic revenues of selective harvest in a Danish 
context were studied for a set of 20 winter wheat fields with 4 
hypothetical scenarios. The results showed significant differences 
in harvest capacity between conventional and selective harvest. 
Even though in some scenarios selective harvest did not require 
notable additional harvest times, the cost-benefit analysis showed 
small economic returns of up to 46 DKK ha-1 for the best scenarios, 
and for most cases losses up to 464 DKK ha-1. Additionally, the 
location of the high protein content areas has great influence on the 
profitability of selective harvest. 
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5.1 Introduction 

Grain prices depend on their protein content and have economic consequences as 

farmers are forced to increase the import of protein sources to fodder or obtain lower 

prices for their grain crops due to different end-use functionalities, e.g. flour milling 

contrasted with starch manufacturing (Farquharson, 2006; Punia, Singh and Kumar, 

2019; Styczen et al., 2020). The import of alternative protein sources, e.g. soybeans 

(Glycine max L.), is not only expensive for the farmer, it has also important environmental 

consequences, such biodiversity losses (Richards et al., 2012) or increased emissions of 

greenhouse gasses (Pelletier, 2008). Even though nitrogen fertilisation and cultivars have 

a direct effect on the protein content of the grain (Farquharson, 2006; Havlin and 

Heiniger, 2009; Punia, Singh and Kumar, 2019), the harvest year and other 

environmental factors can have even a higher influence (Basso et al., 2009; Fronzek et al., 

2018; Pronin et al., 2020; Styczen et al., 2020). These factors do not only affect the overall 

crop quality in a field, but can also create important variations within the field (Godwin 

and Miller, 2003; Guerrero, Neve and Mouazen, 2021). Besides protein content, other 

variables can also define the quality of the grain, which have an influence on its final use 

as well as price, e.g. mycotoxin infections (Whetton, Waine and Mouazen, 2018) or grain 

moisture (Czechlowski and Wojciechowski, 2013; Punia, Singh and Kumar, 2019). 

Since the Global Positioning System (GPS) technology was made globally available 

without deliberate quality degrading, conventional agriculture started to move into 

precision agriculture where in-field variability can be addressed by variable rate 

applications as well as other site-specific management practices (Christensen et al., 2009; 

Peets et al., 2012; Guerrero, Neve and Mouazen, 2021). These site-specific management 

techniques aim to improve the grain quality and quantity, and make the use of resources 

more efficient, which improve the economic return of the farm (Havlin and Heiniger, 

2009). 

Alternatively, infield grain variability has also been proposed to be addressed at 

harvesting time through selective harvest (SH), where grain is harvested separately 

according to its predetermined quality, e.g. protein content. Separating grain by quality 

during harvest can be employed to capture grain price premiums, as some markets 

categorise some grains into grain quality groups (Meyer-Aurich et al., 2008; Long, 

Mccallum and Scharf, 2013; Martin, Mccallum and Long, 2013; Risius et al., 2015). The 

cost-benefits of SH have specifically been studied by the grain price differences of wheat 

based on protein content (Tozer and Isbister, 2007; Meyer-Aurich et al., 2008; Martin, 

Mccallum and Long, 2013) as well as mycotoxin infections (Whetton, Waine and 

Mouazen, 2018), concluding that there is potentially measurable total profits to be gained 

for SH. (Whetton, Waine and Mouazen, 2018) found potential gross profits of 48 GBP ha-

1 for SH in regard to wheat mycotoxin infection. (Martin, Mccallum and Long, 2013) found 

that segregating wheat grain between 12% to 14% in protein content can provide a 

marginal returns between 2.94 USD Mg-1 to 5.51 USD Mg-1 respectively. (Meyer-Aurich et 
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al., 2008) found potential profits of more than 32 EUR ha-1 in some cases of SH of wheat. 

While (Tozer and Isbister, 2007) found that dividing the fields in management zones that 

were harvested selectively gave losses in some scenarios while in others extra revenues 

of e.g. 9.53 AUD ha-1.  

Different SH strategies have been presented in the scientific literature. One of the 

strategies consists in separating the grain stream into two bins in the combine during the 

harvest. This can be achieved by either real-time measurements (Risius, Hahn and Korte, 

2010; Long, Mccallum and Scharf, 2013), or by predicting the grain quality based on the 

locally variable environmental conditions (Czechlowski and Wojciechowski, 2013; 

Niedbała, Czechlowski and Wojciechowski, 2013), or by a combination of modelling and 

monitoring (Wojciechowski et al., 2016). A simpler approach can be accomplished by 

actively monitoring the grain flow to redirect and optimise the processing and marketing 

of the harvested batches independently (Bonfil et al., 2008; Risius et al., 2015). Finally, a 

different strategy is to divide the field into management zones, which are then harvested 

selectively (Tozer and Isbister, 2007; Meyer-Aurich et al., 2008; Whetton, Waine and 

Mouazen, 2018). Each of these SH strategies present different challenges, e.g. reduced 

grain tank capacity when two bins are implemented in the combine harvester, too high 

variations in the values generated by sensors that increases the difficulty of segregating 

the grain stream by a diverter valve in a combine with two bins, or the reduced scalability 

of the grain quality predictive models. Regarding SH by management zones, the different 

approaches found in literature do not cover the practical aspects of harvesting selectively, 

as they estimate the extra harvesting costs by the harvesting distances to be covered but 

do not consider the additional distances of the connection paths and turning areas, or the 

practical issues of how the harvester operator can distinguish the different management 

zones from each other in order to harvest selectively. 

Thanks to the Internet of Things (IoT) applied to agriculture, robotics and autonomous 

vehicles can perform in the near future the same field operations that currently rely on 

traditional human-agricultural vehicles interactions (Kayacan et al., 2015; Bechar and 

Vigneault, 2016; Ren and Martynenko, 2018; Moysiadis et al., 2020; Villa-Henriksen, 

Edwards, et al., 2020; Araújo et al., 2021). Furthermore, autonomous agricultural robots 

can operate in fields accurately following site-specific and optimised route plans that are 

presently challenging for human operators with the newest machinery, even if assisted 

by smart navigation devices (e.g. (Villa-Henriksen et al., 2018)). Optimised route planning 

has been successfully implemented in harvesting operations with the advantage of 

improving the harvest capacity of the vehicles and saving operational time (Busato, 

Berruto and Saunders, 2007; Jensen et al., 2012; Edwards et al., 2015b, 2017; 

Seyyedhasani and Dvorak, 2017), which as a result reduces the risk of soil compaction 

(Villa-Henriksen, Edwards, et al., 2020). In addition, optimised route planning can also be 

used to redirect the routes according to infield spatial variations (Bochtis, Sørensen and 

Green, 2012; Gorter, 2019). Therefore, autonomous agricultural robots and optimised 

route planning have great potential to be employed in SH. Agricultural vehicle robots 

have the advantage of following accurately a specific SH route that is different from the 
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conventional harvest route and that can not necessarily be visible in the field to the 

human eye. In addition, the recent technological advances in monitoring, remote sensing 

and modelling are allowing rapid non-invasive methods to reliably map the grain quality 

of a field prior harvesting (Godwin and Miller, 2003; Joshi et al., 2016). In order to avoid 

the challenges of segregating the grain into two bins while harvesting a new approach is 

studied in this manuscript, where the route plan of a robotic harvester is determined by 

a grain quality map so that the different qualities are harvested separately at different 

times. Similar to the management zones presented by (Whetton, Waine and Mouazen, 

2018) and by (Tozer and Isbister, 2007) the SH strategy studied in this paper relies on 

reliable grain quality maps that may be generated by machine learning as well as 

scientific models or by remote sensed measurements (e.g. (Palosuo et al., 2011; Leroux 

and Tisseyre, 2018; Gyldengren et al., 2020; Styczen et al., 2020)). However, (Whetton, 

Waine and Mouazen, 2018) do not describe how harvesting the different management 

zones would take place, as the study focuses mainly on the management zone creation 

and the cost-benefit analysis of SH and variable-rate applications. And neither does 

(Tozer and Isbister, 2007) address the practical issues of route planning in the SH 

proposed in their study, even though they do take into consideration diverse driving 

directions and the subsequent extra distances to drive during harvest in their 

calculations. 

SH can address some of the sustainability issues associated with the suboptimal 

conventional harvest, which consider the whole field uniformly. Grain quality indicators 

such as mycotoxin concentration, moisture content or protein content directly affect its 

processing and possible end-usage, which can imply grain downgrading (Parry, 

Jenkinson and McLeod, 1995), food contamination (Paul, Lipps and Madden, 2005) and 

ultimately food waste even if some parts of the grain are recognised high-quality (FAO, 

2011) with subsequent social, environmental and economic consequences. 

This study addresses the potential revenue of harvesting separately higher grain quality 

areas from the remaining part of the field by the use of an autonomous field robot. 

Autonomous agricultural robots have the advantage of reliably following a route plan that 

addresses the quality areas in a field that are not necessarily visible by the human eye. 

Additionally, this study takes into consideration the full implications of the route 

alterations of SH in specific designed cases. It is hypothesised that selective harvesting 

based on assessed infield protein content variability is economically feasible in a Danish 

farming context. Consequently, the aim of this study was to (a) determine the harvest 

capacity of SH in different scenarios against conventional harvest; and (b) examine the 

potential economic benefits of harvesting selectively winter wheat in a Danish context. 

To achieve this, a set of fields with hypothetical grain quality scenarios were studied by 

the use of route planning simulations for an autonomous agricultural robot. 
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5.2 Materials and methods 

5.2.1 Route planning with autonomous field robot 

The simulated task times are based on the route planner of the autonomous agricultural 

robot Robotti, which was first described in (Green et al., 2014), and later mentioned in 

(Foldager et al., 2018). An up-to-date description of Robotti can be found in its homepage 

(AgroIntelli, 2021). Robotti is designed to carry and operate a varied range of 

implements, but can currently not perform grain harvest operations. Nonetheless, the 

route planner that directs the robot across the field can make plans that can be employed 

for harvest operations, where the headlands are harvested first and the main field area 

thereafter. In order to perform selective harvest, it is assumed that the areas with high 

quality grain are smaller than the rest of the field with lower quality. The field is then 

harvested considering the high-quality (HQ) areas as subfields or obstacles to avoid when 

harvesting the lower quality crop. Once this part of the field is fully harvested, the high-

quality areas are then harvested and the grain is loaded on trailers to be stored 

independently from the rest of the harvested grain. For the simulations the autonomous 

harvester robot is assisted by two grain carts with 10 Mg of capacity each. 

To assess this future scenario some assumptions are required to make the analysis 

comparable: (a) the storage capacities are equally distanced from the harvested fields 

and are close enough, so that two grain carts are sufficient to assist the robot harvester 

without waiting times; and (b) there is a uniform yield distribution across the fields. 

The route planner method used in this study intentionally follows a row-by-row 

approach which emulates conventional harvest and reduces the potential influence of the 

heuristic optimisation method employed. The Tabu search algorithm of the route planner 

optimises the connections between rows and work areas. The estimated total operational 

times by the route planner are based on a set of inputs. They also include the vehicle 

kinematics in the calculations, i.e. accelerations and decelerations, as well as the steering 

dynamics. The route planner also takes into account the driving time from the harvesting 

end-point to the gate. The robot harvester inputs have been chosen based on the current 

maximum working width of Robotti, i.e. 3 metres, and operational speeds of 1.39 m s-1 

that are both reachable by Robotti and by modern harvesters from a conservative point 

of view. As the crop yield has been assumed uniform across the fields, the threshing 

capacity will not be altered, and therefore, the working speed can be kept constant. 

Additionally, it is needed to be mentioned that Robotti can perform “zero turn” 

manoeuvres, i.e. spin about a stationary point, and the plans include this manoeuvre in 

the paths for connecting rows. 

 



73 
 

5.2.2 Set of fields selection 

A set of fields was generated from the latest national list of agricultural fields from the 

Danish Agricultural Agency (LBST) from the Ministry of Food, Agriculture and fisheries 

of Denmark (LBST, 2021). A few steps were required to create the set of fields for this 

study: (a) from the original dataset from 2019, all the fields where cereals had been 

cultivated were selected; (b) all fields with registered obstacles inside the field were 

excluded; (c) based on the field complexity geometric feature found in Skou-Nielsen, 

Villa-Henriksen, Green, & Edwards, (2017), the 25% most complicated fields were 

removed; (d) the fields were evenly distributed in three groups based on their area, so 

that the group of smallest fields, i.e. smaller than 2.95 hectares, was discarded; and (e) in 

the final step, 20 fields were randomly selected for the medium and largest fields, i.e. 10 

fields larger than 2.95 and smaller than 7 hectares for the medium category, and 10 fields 

larger than 7 hectares for the large category. The most complex fields and the fields with 

obstacles were excluded because their special geometry can increase the total harvest 

time per area (Oksanen, 2013), and consequently affect the study results. And the group 

of small fields was excluded because the produce of their high-quality areas, is too small 

to harvest selectively. This is because, considering an average yield of 7.62 t ha-1 for 

winter wheat (Triticum aestivum L.), which is the most common grain crop in Denmark 

(LF, 2020), and the chosen grain cart capacity of 10 Mg, a small sized field would not yield 

enough of the high quality grain to even fill half a grain cart. An overview of the location 

of the resulting set of fields is shown in Figure 20. 

 

Figure 20. Spatial distribution of the selected set of fields across Denmark. 
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5.2.3 Quality areas creation 

For this study, the high-quality areas were artificially created using the free and open-

source Geographical Information System application QGIS v. 3.4.10, in order to provide a 

comparable set of data. In a real-world scenario, a quality map generated before the 

harvest operation would define the HQ areas to be harvested separately. It is implied that 

a reliable quality map can be created prior the harvest operation. For the comparative 

analysis three theoretical scenarios have been considered (Figure 21): 

• Single Edged case (SE): one HQ area situated at the edge of the field so that at least 

two of its sides collide with the boundary of the field. In this case the HQ area could 

be considered a part-field or sub-field. 

• Single In-field case (SI): the HQ area is collected into one bigger area inside the 

field.  

• Twofold In-field case (TI): the HQ area is composed by two smaller areas inside 

the field. 

 

 

 

 

Figure 21. The three theoretical selective harvest scenarios studied in the paper shown for field 

M8 from the dataset. SE: single edged case; SI: single in-field case; and TI: twofold in-field case. 

 

It has been designated that the HQ areas for the study should cover approximately 20% 

of the field total area. Smaller values than 20% would be too small to be harvested 

separately for a big part of the fields in the dataset. And higher values than 20% would 

make the in-field HQ areas, SI and TI, too big so that they would occupy most of the main 

field area, or would make them reach the field boundary, which goes against the 

definition of these scenarios. An overview of the set of fields and their hypothetical cases 

is presented in Figure 22 and Table 8. 
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Table 8. Field areas in hectares for the set of fields and the high-quality areas  

(HQ A) and remaining areas (Main A). 

Field ID 
Area A  

(ha) 

SE SI TI 

Main A HQ A Main A HQ A Main A HQ A1 HQ A2 

L1 8.45 6.83 1.61 6.72 1.72 6.75 0.80 0.89 

L2 11.67 9.31 2.35 9.34 2.32 9.33 0.63 1.69 

L3 8.98 7.17 1.80 7.15 1.82 7.16 1.24 0.57 

L4 14.77 11.76 3.00 11.80 2.96 11.83 1.76 1.16 

L5 8.56 6.77 1.79 6.84 1.72 6.83 0.78 0.95 

L6 11.16 8.96 2.20 8.93 2.23 9.23 0.42 1.50 

L7 7.03 5.57 1.45 5.62 1.40 5.61 0.87 0.54 

L8 8.18 6.52 1.66 6.53 1.65 6.54 1.37 0.26 

L9 32.29 25.82 6.46 25.83 6.46 25.84 4.75 1.68 

L10 9.56 7.62 1.93 7.63 1.92 7.65 1.20 0.69 

M1 2.96 2.37 0.59 2.34 0.62 2.41 0.14 0.41 

M2 4.96 3.95 1.01 3.98 0.97 3.95 0.56 0.44 

M3 6.55 5.24 1.31 5.23 1.31 5.23 0.94 0.36 

M4 5.02 3.98 1.03 3.94 1.07 4.02 0.47 0.51 

M5 5.46 4.38 1.08 4.33 1.13 4.38 0.13 0.94 

M6 3.19 2.57 0.62 2.53 0.65 2.56 0.22 0.40 

M7 6.18 4.95 1.22 4.94 1.23 4.94 0.72 0.51 

M8 3.66 2.93 0.73 2.95 0.71 2.93 0.30 0.43 

M9 6.83 5.44 1.39 5.49 1.33 5.46 0.99 0.37 

M10 3.61 2.88 0.73 2.92 0.69 2.89 0.44 0.27 

 

 

Figure 22. Overview of the set of fields and their distinct harvest cases. 
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5.2.4 Virtual capacity analysis 

The harvest capacity was calculated in estimated hectares per hour for each case scenario 

and for each field in the dataset. The capacity analysis was based on the simulated 

operational time of the robot harvester to complete the operation. The results were then 

compared against each other to determine significant differences between the 

hypothetical cases previously described. To achieve this, a t-Test was applied between 

the medium and large sized fields, between conventional and selective harvest, between 

the SE case and the SI and TI cases, as well as between the SI case and TI case. A 

significance level of 0.05 was used in the analysis. 

 

5.2.5 Virtual cost-benefit analysis 

Along with the assumptions stated earlier, further assumptions for the cost-benefit 

analysis have been made: (a) the farm has the capabilities to store and sell the two 

different qualities of grain without directly implying additional costs; and (b) the total 

yield is the same in all scenarios studied for each field, so that the overall fuel 

consumption is only dependent on the harvest time. The cost-benefit analysis was 

determined by the operational costs to harvest each case scenario and field, and the 

benefits generated by selling the produce as a homogeneous product in conventional 

harvest or as high and lower qualities with corresponding prices. The operational costs 

per hour for the autonomous harvester robot have been estimated to 800 DKK h-1 for the 

medium sized field and 650 DKK h-1 for the large sized fields, based on the current Robotti 

operating capacity and harvest contracting services prices in Denmark. The cost 

differences are due to field size affects harvest efficiency (Xangsayasane et al., 2019). A 

grain cart cost during harvest has been estimated to be 600 DKK h-1. The total field output 

has been assessed to be the average yield for winter wheat in Denmark from the last five 

years, i.e. 7.62 Mg ha-1  (LF, 2020). As 90% of the wheat produced in Denmark is for animal 

fodder (Jørgensen, 2001), the prices used in the analysis correspond to fodder wheat. The 

average protein content for winter wheat in Denmark was 9.6 % (Sloth and Poulsen, 

2020), which had an average price for 2020 of 1242 DKK Mg-1 (SEGES, 2021). The price 

premium for a protein content above 11% is 30 DKK in regard to values below 10% (DLG, 

2017; VA, 2020), resulting in a price of 1272 DKK Mg-1. The economic return per hectare 

for the three SH cases studied compared to the conventional harvest case was calculated 

by (ΔHC+ΔHR)/Af, where HC are the harvest costs in DKK, HR the harvest revenue of SH 

in DKK, and Af the field area in hectares. The HC were calculated by adding the operational 

costs per hour of the autonomous harvester robot and the two grain carts, multiplied by 

the harvesting time for each field. The HR were calculated by multiplying the average 

yield by the field part area being harvested and by the corresponding grain prices. 
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5.3 Results 

 

Figure 23. Route plans for field L1 for the four harvest cases, i.e. conventional (C), single edged 

case (SE), single in-field case (SI) and twofold in-field case (TI). White lines represent working 

paths and blue lines the connection paths. 

Table 9. Detailed estimated harvest times in seconds of field L1 for the four harvesting cases 

and their field divisions. 

Harvest time (s) for field L1 

C SE SI TI 

Main Main HQ Main HQ Main HQ1 HQ2 

7.20 6.05 1.76 9.10 2.14 8.09 0.97 1.10 

 

Table 10. Detailed calculations of harvest costs and revenues in DKK of field L1 for the four 

harvesting cases. 

Field ID 
Harvest costs (DKK) Harvest revenues (DKK) 

C SE SI TI C SE SI TI 

L1 -8100 -8852 -9744 -9626 80001 80371 80396 80391 
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Table 11. Estimated harvest times for the four harvesting cases and the 
percentage of time increase for the SH cases compared to conventional 
harvest. 

Field  
ID 

Harvest time (hours) + pct. increase 
C SE SI TI 

L1 7.20 7.81 +8.4% 11.25 +56.1% 10.16 +41.0% 
L2 9.51 9.71 +2.1% 11.80 +24.0% 12.32 +29.6% 
L3 6.82 7.74 +13.5% 8.86 +29.8% 10.51 +54.0% 
L4 10.71 11.44 +6.8% 13.29 +24.0% 13.84 +29.2% 
L5 6.90 7.26 +5.2% 8.89 +28.9% 9.81 +42.2% 
L6 8.95 9.63 +7.6% 10.99 +22.8% 9.31 +24.9% 
L7 5.69 6.24 +9.7% 6.44 +13.2% 8.40 +47.7% 
L8 6.80 7.29 +7.2% 8.30 +21.9% 8.38 +23.1% 
L9 24.37 24.88 +2.1% 26.79 +9.9% 27.20 +11.6% 
L10 7.70 8.11 +5.3% 8.75 +13.6% 10.59 +37.5% 
M1 2.75 3.02 +9.9% 3.64 +32.7% 4.24 +54.4% 
M2 4.07 4.72 +15.9% 5.00 +22.8% 6.13 +50.6% 
M3 5.41 5.58 +3.2% 6.52 +20.6% 7.61 +40.6% 
M4 4.06 4.49 +10.5% 5.15 +26.8% 6.30 +55.1% 
M5 4.42 5.02 +13.6% 5.86 +32.4% 6.19 +40.1% 
M6 2.81 3.16 +12.5% 4.63 +65.1% 4.84 +72.6% 
M7 4.84 5.26 +8.8% 5.76 +19.1% 6.86 +41.8% 
M8 3.71 3.71 +0.0% 4.85 +30.7% 5.71 +53.9% 
M9 5.52 6.22 +12.8% 6.74 +22.1% 8.65 +56.9% 
M10 3.68 3.78 +2.8% 4.97 +35.1% 4.77 +29.7% 

 

In total 160 harvesting simulations were successfully run so that the operational times 

for each of the fields and each of the quality areas of the four different scenarios could be 

analysed (Figure 22 and Figure 23). Detailed harvest times and cost analysis for an 

example field, i.e. field L1 (Figure 23), are presented in Table 9 and Table 10. The harvest 

times for SH increased compared to conventional harvest in all SH cases but one, i.e. field 

M8 for case SE that equalled the conventional harvest time (see Table 11). The harvesting 

times for the SH case SE increased between 0.0% and 15.9% compared to conventional 

harvest, having an average increase for the medium sized fields of 9.0% and 6.9% for the 

large sized fields. Case SI increased between 9.9% and 65.1% the harvest time in regard 

to conventional harvest, with an average of 30.8% and 24.4% for the medium and large 

sized fields respectively. Case TI used between 11.6% and 72.6% more time than 

conventional harvest, spending in average 49.6% more time for medium sized fields and 

34.1% for large sized fields (Table 11). Statistically significant differences were found 

between the harvest capacity of medium and large fields in all four cases (Table 12). 

Harvest capacities were also significantly different between conventional and all SH 

cases, as well as for SE compared to SI and TI cases. In the comparison between SI and TI 

SH cases, significant differences in harvest capacity were found for medium fields. 

However, no significant differences between harvest capacities were found between 

cases SI and TI among large fields (Table 12). 
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Table 12. Harvest capacities for the four harvesting cases studied and the field size groups, 
as well as t-Test (p > .05) applied to the harvest capacities.  

Harvest case 
Capacity scores 

(Ha h-1) 

t-Test for harvest capacity 
Large vs. 
Medium 

C vs. SH SE vs. SI 
and TI 

SI vs. TI 

x̅ SD p p p p 
Conventional 1.21 0.10     

Large 1.26 0.06 - -   
Medium 1.16 0.10 .026 -   

SE 1.12 0.09     
Large 1.18 0.07 - .015 -  

Medium 1.06 0.07 .003 .036 -  
SI 0.96 0.14     

Large 1.02 0.11 - .000 .003 - 
Medium 0.90 0.13 .046 .000 .005 - 

TI 0.87 0.15     
Large 0.97 0.13 - .000 .000 .172 

Medium 0.78 0.09 .002 .000 .000 .038 

 

Table 13. Total yields and economic returns for  

SH cases compared to conventional harvest. 

Field 

ID 

Yield 

(Mg) 

Economic return per hectare 

(DKK ha-1) 

SE SI TI 

L1 64.41 -3 -264 -181 

L2 88.93 35 -82 -111 

L3 68.45 -21 -101 -221 

L4 112.56 15 -67 -92 

L5 65.29 21 -105 -175 

L6 85.06 5 -73 -90 

L7 53.58 -4 -23 -205 

L8 62.40 8 -72 -79 

L9 246.06 36 -3 -11 

L10 72.85 19 -25 -151 

M1 22.63 -32 -208 -385 

M2 37.82 -64 -114 -307 

M3 49.97 23 -98 -239 

M4 38.26 -25 -135 -334 

M5 41.67 -48 -176 -230 

M6 24.37 -49 -438 -496 

M7 47.12 -13 -81 -232 

M8 27.94 46 -220 -418 

M9 52.07 -41 -114 -344 

M10 27.56 23 -259 -211 

 

The cost-benefit analysis shows that for seven out of the ten large fields there is an 

economic return between 5 and 36 DKK ha-1 for the SH SE case, while for the medium 

sized fields only three out of ten have a positive economic return for the SE case, which is 

between 24 and 46 DKK ha-1. Cases SI and TI do not have any positive economic return in 
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the results of this study. SH case SE result in negative extra costs that range from -3 to -

264 DKK ha-1 for the large fields and from -81 and -438 DKK ha-1 for the medium sized 

fields. The negative extra costs for harvesting selectively in case TI range from -11 to -

221 DKK ha-1 for the large fields and between -211 and -496 DKK ha-1 for the medium 

sized fields (Table 13). Detailed harvest costs and revenues for an example field, i.e. field 

L1 (Figure 23), are presented in Table 10. 

5.4 Discussion 

Even though for one field, i.e. field M8, SH case SE presented no added harvest time (see 

Error! Reference source not found.), according to the results obtained SH affects 

significantly in all cases the harvest capacity when compared to conventional harvest 

(Table 12). This was an expected result as SH will in most cases increase the harvest time 

due to longer distances to be travelled. However, the results show that SH for some fields, 

e.g. Field M6 for case TI, it can increase the harvest time by more than 70% (see Table 

11). Even if economically profitable, which it is not (see Table 13), this scenario would be 

unacceptable for most farmers, who are often greatly constrained by operational time 

schedules (Edwards, Bochtis and Søresen, 2013). Field area also affects significantly the 

harvest capacity between conventional and SH, due to the field area effects on harvest 

efficiency (Xangsayasane et al., 2019). Regarding the SH cases studied, no statistical 

difference was found in harvest capacity for HQ areas that cover 20% of the large fields 

when they are distributed inside the field in one (SI case) or two areas (TI case). This is 

considered to be caused by the large size of the fields compared to the 3-metre working 

width of the harvester, which makes it possible for the optimised route planner to reduce 

the connection paths by segmenting the field into subfields when optimising the route to 

follow. The SE case is considered to be the optimal SH scenario because it allows dividing 

the field into subfields to be managed and harvested separately. This is already 

sometimes being applied when thoughtful farmers manage a farm (SmartAgriHubs, 

2021). The SE case would also be easier to implement in contemporary farms without 

autonomous field robots. Even though the most complex fields were excluded when 

creating the field dataset (see Figure 22), field shape and the position as well as the shape 

of the HQ areas can have important effects on the total harvest times (Spekken and Bruin, 

2013). The shape and position of the HQ area(s) can mean an increased number of rows 

and the segmentation of the main field area into subfields (see Figure 23), which 

eventually increase the total harvest time (see Table 9) and consequently increase the 

harvesting costs (see Table 10). In some specific cases SH was nearly as efficient as 

conventional harvest, while in other cases it increased the harvest time estimations in 

hours, above 50% more harvest time for many field cases (see field M6 in Table 11). 

Nonetheless, the theoretical SH cases presented here may not be the real cases 

encountered. The HQ areas modelled or measured for many fields can be scattered 

around the field and difficult to combine into HQ areas. A decision support system that 

evaluates harvesting times for different SH scenarios and prior harvest field tests for 
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quality and quantity would aid the farm manager on decision making (Tozer and Isbister, 

2007). 

The harvest capacity results previously discussed need to be understood together with 

the cost-benefit analysis results, which show only minor positive revenues for some of 

the SE cases and greater losses for most fields in SI and TI cases. The little economic 

return resulted from the analysis of this study contrasts with the higher returns reported 

in other studies (e.g. (Tozer and Isbister, 2007; Meyer-Aurich et al., 2008; Martin, 

Mccallum and Long, 2013; Whetton, Waine and Mouazen, 2018)). Corresponding with 

(Tozer and Isbister, 2007) analysis, the modest or negative revenues found in this study 

are influenced by grain price differences and the operational and logistics costs of 

harvesting and managing these HQ areas separately. The grain price differences used in 

the other SH studies range from more than double to more than ten times higher than the 

grain price differences used in this study (Farquharson, 2006; Martin, Mccallum and 

Long, 2013; Whetton, Waine and Mouazen, 2018). This affects the potential revenue of 

SH significantly. This can be caused by using in the analysis only fodder wheat price 

differences and not including premium prices for milling wheat. Including milling wheat 

prices in the comparison is not realistic in a Danish context as fodder grain cannot be 

destined for milling regardless of the protein content due to regulations. The man hour 

and machinery costs for harvesting in Denmark are also to be taken into account in the 

results, as they may be higher than in other contexts. Moreover, even if (Tozer and 

Isbister, 2007) included additional harvest distances in its operational cost calculations, 

none of the SH studies from literature have modelled the route planning time implications 

of SH that have been considered in this study. The additional times required for SH are 

an important factor to take into consideration because in some scenarios it can almost 

double the operational time. This study points out the necessity of including harvesting 

times in SH studies, which has not been done earlier in related work. It shows a 

contrasting reality for many scenarios compared to the results of related work; scenarios 

which farmers will often encounter in their fields. This study also uses a larger field 

dataset than the other studies related to SH, with the intention of addressing a larger 

variety of fields in regard to size and form. Consequently, the necessity to assess the 

implications of SH prior the operation is crucial, as shown by this study. Finally, it is 

needed for consideration that the robotic harvesting costs have been based on current 

conventional harvest costs. However, robotic autonomous harvesting could potentially 

reduce the operational costs per hour, which would benefit the SH results. 

Nonetheless, in order to address sustainability issues, such as import of alternative 

protein sources, SH can still result in economic revenue in some cases. From the results, 

it is observed that the SE cases suppose for many fields little additional time than 

conventional harvest. SE cases are also harvested significantly more efficient than the 

other two cases. In addition, this type of harvesting method can also benefit of 

management practices like variable rate fertilizer application (Guerrero, Neve and 

Mouazen, 2021) that can enhance the output and more clearly define the HQ areas to be 

harvested separately. 
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In regard to the SH strategy followed by the autonomous harvester robot, the approach 

can also be applied to cases were harvesting lowest quality areas separately could 

increase the total average of the rest of the field to reach price premiums. A similar but 

alternative harvesting procedure could be harvesting the whole field simultaneously, but 

onload to different grain carts depending on the quality area the harvester is in. This 

would unavoidably require more grain carts involved in the operation as well as higher 

waiting times for them in the field with their subsequent costs, but could potentially 

reduce operation time compared to the method presented in this study. 

Even though optimised route planning reduces the risk of negative impact of wheel traffic 

in the soil (Villa-Henriksen, Skou-Nielsen, et al., 2020), it is necessary to mention that the 

SH strategy presented in this paper will inevitably increase the infield traffic, which can 

have consequent negative impacts on future crop yields (Chamen, 2015; Schjønning et al., 

2016; Obour, Keller, Jensen, et al., 2019).The selection of assumptions made in this study 

were essential to make the results comparable. However, some assumptions may not 

fully represent the reality in many fields, e.g. uniform yield distribution, and some could 

inevitably affect the results, e.g. distance to storage. Not all farms have the capabilities of 

storing and selling different grain qualities, which is indispensable for SH. Distance to 

storage from the field will unavoidably affect the results, as they may require to increase 

the amount on grain carts or imply waiting times inside the field, which will automatically 

increase operational costs. This selected assumption represents an ideal but realistic 

scenario and is necessary for making the results comparable, as large distances will 

always affect negatively the economic return of the field (Lamsal, Jones and Thomas, 

2016). A 20% HQ area is also an assumption that will affect the results if changed. Larger 

HQ areas will automatically improve the economic return of SH due to higher HQ yields, 

and the HQ areas would potentially reach the field boundary becoming the SE scenario, 

which has been proven to be harvested significantly more efficiently. Smaller HQ areas 

will predictably provide worse results for SH. Within the field, a uniformly distributed 

yield that has been assumed in this study to make a comparable dataset does not 

represent the reality of field crop yields. Within field yield variations are a fact 

acknowledged by farmers and in literature (e.g. (Ping and Dobermann, 2005; Lyle, Bryan 

and Ostendorf, 2014)). Furthermore, the long-recognised significant inverse relationship 

between yield and protein content (Terman et al., 1969; Simmonds, 1995) implies that 

the HQ areas will have lower yield than the rest of the field, affecting the harvesting speed 

and fuel consumption because of differences in feeding rates and threshing power 

requirements (Tieppo et al., 2019). Lower yields for the HQ areas would inevitably reduce 

the already marginal benefits and losses of selectively harvesting fodder winter wheat 

studied in this article in a Danish context. Another aspect to grain quality variability is the 

variability that is not captured by spatial quality maps (Leroux and Tisseyre, 2018), i.e. 

the variability within the mapping resolution, within the working width of the harvester 

or even within the grain spike. For addressing this variability, only grain segregation 

during harvest or after harvest can accomplish the task. However, this strategy relies on 

sensors that are very challenged to monitor the grain stream and a diverter valve that 
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needs to react fast enough to segregate the grains. A task that cannot be relied upon with 

the current technological development state. These selected assumptions in the study 

intend to simulate realistic farm scenarios or are required to make the results 

comparable. The results with the given assumptions still provide an insight of SH applied 

to a Danish context in general. For a specific field, it is always recommended to make a 

pre-harvest assessment to study the feasibility of SH, which may be profitable in certain 

cases. 

In different contexts, where the grain price differences are higher and the harvesting 

costs lower than in Denmark, SH can be an interesting option to feasibly increase the 

economic return of some fields. The ideal position of the HQ areas for higher economic 

returns is represented by case SE, where the edges of one HQ area reach the field 

boundary and cover at least 20% of the field area creating minimum reduced operational 

efficiency. In those scenarios SH is expected to be feasible. Nonetheless, it is always 

required to study each field based on reliable grain quality maps to assess the viability of 

SH for that field. 

Further research is required to address the potential benefits of SH with autonomous 

agricultural robots, where the route planning involves actively the grain carts so that the 

whole field is harvested in one go, but the grain carts are assigned to the harvester 

depending on the grain quality area it is located on. The influence of grain price 

differences and harvesting costs should be addressed too as they truly determine the 

economical return of SH. Finally, the influence of the size, shape and location of the HQ 

areas with respect to the field boundary could be interesting to study as the results 

presented in this article show how much HQ areas location and distribution affect the 

harvest capacity. 

5.5 Conclusion 

Selective harvesting has been studied for an autonomous agricultural robot in a Danish 

context for harvesting fodder winter wheat and for its potential to reduce the amount of 

imported alternative protein sources. The optimized route planning tool from the 

autonomous field robot, Robotti, employed in the study was able to generate routes for 

all the fields and cases of the dataset. Taking into consideration the selected assumptions, 

selective harvesting by harvesting separately high-quality areas (based on protein 

content) from the rest of the field is not economically feasible in a Danish context. The 

results showed significant differences in harvest capacity between conventional and 

selective harvest. The field shape as well as the location, shape and distribution of the 

high-quality area(s) had a significant influence on the SH capacity. These negative results 

for SH were affected by the small price differences of fodder wheat regarding protein 

content considered in this study. The high harvesting costs considered in the simulations 

had an influence too. In different contexts with higher grain price differences and lower 

harvesting costs, SH is expected to be economically feasible for the case SE, where the HQ 
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areas reach the field boundaries and cover at least 20% of the field area. Additional 

research on the influence of grain price differences as well as harvesting costs, on the 

specific influence of shape and location of the HQ areas, and different route planning 

strategies will provide improved insight of the possibilities of SH performed by 

autonomous field robots.  
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Chapter 6 General discussion 

In this chapter, the main contributions and conclusions from the chapters 2, 3, 4 and 5 

are assessed taking into consideration the objectives of the Ph.D. project. The research 

contributions that addressed the identified knowledge gaps are evaluated and 

contextualised within the state-of-the-art. 

6.1. Internet of Things in arable farming and 

optimised route planning 

Chapter 2 focussed on reviewing the implementation, applications and challenges of the 

IoT in arable farming, which has some distinct characteristics that are unique compared 

to other farming systems and had not been addressed before. The exhaustive reviewing 

process included the considerations made by 167 research articles in the implementation 

and applications of IoT technologies in arable farming, as well as field operations 

surveillance and optimisation. Having in mind the interdisciplinary viewpoint, the broad 

focus on arable farming in general covered the perspectives of diverse disciplines and 

specialities in the employment of IoT in such a context. An exclusive review paper on 

optimised route planning in arable farming would have missed some of the 

considerations and challenges identified by other applications, which could potentially 

benefit the considerations made for the implementation of a harvest fleet route planning 

system. Furthermore, as little information about the practical implementation of 

optimised route planning for field operations was available, the broad perspective was 

required. Additionally, the review paper thoroughly covered the challenges found in the 

implementation of IoT in agriculture in a systematic manner and proposed solutions to 

each of them, which has not been done so methodically in previous reviews. The review 

can therefore aid other researchers identify unaddressed challenges and may show 

potential future areas of research. 

From another point of view, the review paper drew attention to this generally overlooked 

subject in most reviews about IoT in agriculture, which is optimised route planning and 

monitoring of field operations. This subject has either not been included (Stočes et al., 

2016; Ray, 2017; Talavera et al., 2017) or only slightly mentioned (Verdouw, 2016b; 

Tzounis et al., 2017) in the previous reviews. Therefore, a whole section in the review 

paper was dedicated to this relevant application of IoT technologies. This is especially 

pertinent with the current and near future employment of autonomous agricultural 

vehicles (Moysiadis et al., 2020; Araújo et al., 2021). 
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6.2. Implementation of a harvest fleet route planning 

tool 

A practical solution for the integration and implementation of a harvest fleet route 

planning tool was proposed in chapter 3. The solution employed smart Android devices 

with multifunctional purposes: data handling, gateway and graphical user interface. The 

Android devices were connected through the internet with a server and a web 

application. Only a few examples of vehicle and operation live monitoring have been 

described in literature (Pfeiffer and Blank, 2015; Oksanen, Linkolehto and Seilonen, 

2016), however they did not include any route planning features, which requires some 

additional features and computational power. Therefore, the solution proposed in this 

conference paper, which described the practical implementation of the optimising and 

monitoring tool for harvesting operations, covered a gap in literature. Furthermore, the 

solution described also addressed the integration of the innovative route optimisation 

model combined with the technology requirements for its implementation, as well as its 

practical application. 

The Android devices used had sufficient computing resources to execute the route 

optimisation calculations and dynamic rerouting of the vehicles. These devices provide a 

flexible and scalable solution that can work across manufacturing brands (Hernandez-

Rojas et al., 2018). And it is that interoperability across brands that is often the biggest 

challenge (Brewster et al., 2017). Even though the ISO 11783 standards and the ISOBUS 

components are currently supported by agricultural machinery producers, it is only 

meant to link tractor and implement through a wired connection (Oksanen, Piirainen and 

Seilonen, 2015). A practical challenge of the system proposed is that the use of Android 

devices adds a new screen for the operator to look at, besides the on-board computer(s) 

in the machine cabin. It is therefore not the optimal solution. An integrated tool in the 

terminals of the machines could increase the computational capacity of the optimisation 

tool and reduce the number of screens to look at. However, it would require the use of 

widely adopted standardised formats that are integrated in the systems across brands, 

and this is currently not the case. Some attempts to standardise machine agricultural data 

across manufacturing brands are being made. The ADAPT framework is aiming to 

become the standard format in agriculture (Brewster et al., 2017), but it is an offline 

solution. And the Agricultural Industry Electronic Foundation (AEF) standard 

organisation is developing the EFDI (Extended Farm Management Information Systems 

Data Interface) for seamless communication between ISOBUS machines and FMISs, but it 

is still under development (AEF, 2020). In a similar manner, FIWARE, the platform 

promoted by the European Union, is aiming for an IoT-enabled smart farming solution 

that includes farm machines (Rodriguez, Cuenca and Ortiz, 2018), but is still not fully 

developed. Therefore, the solution presented in chapter 3 is considered to be the 

adequate in the current state of smart farming. 
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Another important aspect of the solution proposed is the location of the computations. 

The harvest fleet route planning system used edge-computing in order to increase 

operational efficiency and reduce potential latency problems when communicating the 

data caused by limited mobile network connection. The edge devices for the 

computations were the same devices in charge of the data handling and visualising the 

solution, i.e. the Android devices, thus increasing the efficiency of the system. 

Additionally, edge computing can reduce to the minimum the amount of data transferred 

through the internet (Ferrández-Pastor et al., 2016) and consequently ensure minimal 

delays in the dynamic rerouting of the vehicles involved during the harvesting operation. 

However, the amount of data transferred is not big enough to become an issue, as it is 

only a few KB s-1 of text. A cloud-computing solution could be a valid alternative option. 

In the cloud, a high-performance computer cluster can be assigned to process the 

computations required for the harvest fleet route planning, allowing faster completion 

times (Seyyedhasani, Dvorak and Roemmele, 2019). Software updates and logging of 

errors are also easier to manage with a cloud solution. Nonetheless, both edge and cloud 

computing solutions require internet connection, which is not always available in rural 

areas. To solve this, wireless vehicle-to-vehicle communication would be necessary. 5G, 

the latest generation of mobile communications, can solve this problem once it is widely 

adopted as it allows vehicle-to-vehicle communication (Marsch et al., 2016). Once 5G is 

widely adopted, further studies would be required to address the functionality of the 

systems in areas with reduced internet connection. 

Finally, the optimisation goal of the algorithms can vary significantly, as described in the 

introduction. The harvest fleet route planning tool described in this study aims to 

minimise the total harvest time, while many other solutions proposed in literature aim to 

minimise the non-working distances of the harvester (Bakhtiari et al., 2013; Bochtis et 

al., 2013; Conesa-Muñoz, Pajares and Ribeiro, 2016; Utamima, Reiners and Ansaripoor, 

2019). Reducing non-working distances to a minimum may translate into total operation 

time reductions, but not necessarily always. As harvest operations involve the 

collaboration of a fleet of vehicles, the grain carts involved may not always be readily 

available to receive an unload. This is because in many real-world situations, grain carts 

have to drive outside the field, where on-farm offloading or traffic related situations can 

result in important delays. During these delays, the harvester may end waiting motionless 

in the field for unloading its full grain tank. As harvesting operations are very costly 

(Basnet, Foulds and Wilson, 2006; Plessen, 2019), reducing the total harvest time is more 

appropriate. Because the vehicles are constantly being monitored, when the tool 

calculates grain cart delays, it will redirect the harvester to work an alternative route than 

may be longer in distance, e.g. rows at the opposite side from the gate, but that will avoid 

the harvester to wait for an unloading event. This will result in an overall operational 

time reduction with its corresponding costs savings. 
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6.3. Harvest fleet route planning in risk of soil 

compaction reduction 

Chapter 4 addressed the environmental perspective of the use of a harvest fleet route 

planning system. Due to the important negative environmental impacts of wheel 

trafficking on the soil, e.g. nutrient leaching, green-house-gas emissions and erosion 

(Vermeulen and Mosquera, 2009; Chamen, 2015; Bogunovic et al., 2018), as well as the 

negative impacts on the crops (Alblas et al., 1994; Chen and Weil, 2011; Obour, Keller, 

Jensen, et al., 2019), the traffic associated with harvesting operations was studied. In the 

chapter, the recorded traffic produced by all the vehicles involved in harvesting 

operations are compared to the traffic produced if a harvest fleet route planning tool was 

being employed. The article addressed the environmental perspective of an optimisation 

tool which goal is not directly intended to minimise the risk of soil compaction, as the 

solutions proposed by Bochtis, Sørensen, & Green (2012) and Gorter (2019). In contrast, 

the aim of the tool studied was to reduce overall harvest time, which is often the main 

goal of farm managers and contractors (Basnet, Foulds and Wilson, 2006; Plessen, 2019). 

The results show a reduction of traffic occurrences in all the fields studied, especially 

because the tool timely coordinates the unloading events making the grain carts drive 

efficiently to the harvester when needed. However, the study showed that regarding 

repeated traffic the tool did not always perform so well, because the in some scenarios 

the system may direct a grain cart or the harvester in a route that results in more repeated 

traffic if that means operational time reductions. The use of the tool also resulted in 

higher maximum traffic loads per grid cell, mainly because the optimisation tool filled the 

grain carts to the maximum. Nonetheless, the results confirmed that harvest fleet route 

planning can be employed in the soil compaction mitigation strategies of a farm. This had 

only been mentioned by previous research articles, but had not been studied yet. 

The harvest fleet route planning tool can be adapted to reduce traffic in the main field 

area by adding specific trafficability constraints, e.g. controlled traffic farming, or by 

choosing an optimal driving direction that reduces overlapping instead of reducing 

manoeuvring. These changes could affect the overall goal of reducing harvesting time, but 

the additional time may be small compared to the benefits of reducing the in-field traffic. 

Further investigations on how the driving direction and different trafficability 

constraints affect harvest times and in-field traffic would be required. Finally, if a risk of 

soil compaction map was to be included in the route planning optimisation algorithms, 

cost functions that take into consideration the maps and the vehicle tank capacities would 

be necessary in the calculations. However, if the tool employed does dynamic rerouting, 

as the system presented in chapter 3, experienced machine operators could alter the 

route to avoid for example wet areas, so that the human-in-the-loop would collaborate 

for a joint effective solution. 
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6.4. Optimised route planning in selective harvesting 

The aim of chapter 5 was to address the potential application of optimised route planning 

for selective harvesting. Selective harvest has the intention of generating higher 

economic returns for a field by harvesting the crop separately based on the quality of the 

grain in order to capture grain price premiums. In literature the economic effects of 

altering the route of the vehicles involved in selective harvest has not been fully explored 

before. The results of this study show that in a Danish context the price differences in 

quality are too small to make selective harvest economically feasible. The main cause for 

these small price differences is that Denmark produces mainly fodder grain, which is 

much cheaper than grain for human consumption (LF, 2020). The results also 

demonstrate that even though the harvest capacity is significantly affected in all the 

selective harvest scenarios studied, in some specific cases the additional harvest time is 

negligible. It is assumed therefore that in other contexts with high grain price differences 

and lower harvesting costs, the economic return would be interesting enough for farmers 

to adopt it. Nevertheless, the study provides a new perspective on how selective harvest 

affects the harvesting route with its subsequent economic penalties. The study also offers 

a more realistic view on selective harvest that shows that in many cases, selective harvest 

is not profitable for the farmer an should be only targeted by careful economic feasibility 

studying prior the operation (e.g. SmartAgriHubs, 2021). 

As the study proposed three different quality map scenarios, the results clearly 

demonstrate that one case has more potential for selective harvest than the other two 

cases. When the quality area reaches the boundary of the field, this area can be harvested 

independently as a subfield. This selective harvest scenario decreases the harvest 

capacity only by 0.04 Ha h-1 for the larger fields and by 0.1 Ha h-1 for the medium sized 

fields. The reduction in harvest capacity is equivalent to or better than the reduction 

observed between conventional harvest of larger and medium sized fields, which is 0.1 

Ha h-1. 

The approach to selective harvest presented in the study consisted in harvesting first one 

area and thereafter the other. Harvesting both at the same time by not altering the 

harvester route but emptying the grain tank every time a new quality area is reached, 

could potentially reduce the total harvest times. However, it would imply the use of at 

least one more grain cart. Future research on this alternative approach is necessary to 

address its potential benefits.  

The article also offers some insight into the application of autonomous field robots to 

perform field operations. The route planner employed for the simulations is currently 

employed by an autonomous field robot in diverse operations. As smart farming is 

employing more automation and robotics in field operations (Moysiadis et al., 2020; 

Araújo et al., 2021), new approaches compared to the traditional operations can be 

applied. These alternatives, such as strip cropping or selective harvesting, may require 

complex routes to be followed by the vehicle, which can be very challenging for a human 
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operator, but are not so for an autonomous vehicle. These new approaches can benefit 

farming and the environment in new ways that require assessment.  

6.5. Interdisciplinary approach to harvest fleet route 

planning 

The overall aim of the study presented in this Ph.D. dissertation was to provide an 

interdisciplinary perspective to harvest fleet route planning centring the attention on the 

implementation, i.e. the technological aspect, and different applications of the system by 

looking into the agronomic, environmental and economic aspects of them. These other 

aspects of optimised route planning, e.g. vehicle routing problem, in agricultural 

operations (Bochtis and Sørensen, 2009), have either not been addressed yet or only to a 

limited extent. Until recently, the main focus has been the mathematical optimisation and 

variants to the problem, but to the author’s knowledge the technologies required for the 

physical implementation of such a system have not been addressed. And regarding the 

applications, some studies have looked into some of the environmental aspects of it 

(Bochtis, Sørensen and Green, 2012; Rodias et al., 2017; Gorter, 2019) but still focusing 

on the optimisation method employed to address a specific goal. The economic aspect has 

been presumed based on the time or the distance reductions made by the methods used 

(Conesa-Muñoz, Pajares and Ribeiro, 2016; Edwards et al., 2017; Utamima, Reiners and 

Ansaripoor, 2019) but the field datasets used in the analysis were too small to draw 

tangible conclusions that are applicable for farm managers (Barnes et al., 2019). 

Additionally, the economic return per unit area of optimising the harvest route has not 

been addressed yet. Therefore, chapter 3 made a proposal for the implementation of an 

optimised route planning tool for harvest operations from the technology point of view; 

chapter 4 aimed to cover the environmental aspects of risk of soil compaction reduction 

of a harvest fleet route planner that aims to reduce operational time; and chapter 5 

covered the route planning economic implications of selective harvest. These are 

perspectives that integrate different scientific disciplines and have not been studied yet. 

Even though the technology maturity and economic returns from smart farming 

technologies are the main drivers for their adoption (Day, 2011; Ren and Martynenko, 

2018; Barnes et al., 2019), the social aspect is still an important aspect to be considered 

(Sørensen et al., 2010; Barnes et al., 2019; Moysiadis et al., 2020). The social aspect covers 

not only the acceptance and adoption of the technology, but also the social implications 

that it may have (Bechtsis et al., 2017). The social perspective is also relevant in many 

interdisciplinary studies (Macleod and Nagatsu, 2018; D’Este et al., 2019); however, it has 

not been directly addressed in this study. Nonetheless, it has been informally considered 

during the physical tests of the harvest fleet route planning system through unstructured 

conversations, whose feedback was considered in the discussion section of each chapter. 

In general, the route optimising tool received positive feedback from the operators and 

farm managers, but desired integration of the tool with the on-board computer in the 
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cabin, confidence in the economic return of an eventual investment and robustness of the 

whole system. These considerations match overall with the main factors affecting the 

adoption of precision agriculture technologies in Europe (Barnes et al., 2019). 

The environmental perspective is also crucial due to the global need to increase food 

production and at the same time reduce its environmental impacts (Godfray et al., 2010; 

Tilman et al., 2011; Crist, Mora and Engelman, 2017). Furthermore, as financial incentives 

from governmental institutions play a big role in adopting smart farming technologies 

(Barnes et al., 2019), these public institutions do not only aim to increase the economic 

benefits of agriculture but also to jointly reduce its environmental impacts. Consequently, 

chapter 4 addressed the environmental effects of harvest fleet route planning in the soil 

structure. 

The perspective of different disciplines was employed in this study to achieve a more 

interdisciplinary view of optimised route planning in harvest operations. These 

perspectives were missing or were limited in literature, and needed therefore more 

research, which this Ph.D. project has provided. More future research from perspectives 

from different disciplines is still necessary on optimised route planning generally and 

harvest fleet route planning specifically. More potential applications need to be 

implemented and evaluated on large field datasets so that the environmental and 

economic benefits are confirmed. These route planning systems are becoming currently 

even more relevant with the arrival of commercial autonomous field robots, stressing the 

necessity of more interdisciplinary research on these tools. 
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Chapter 7 Conclusions 

An interdisciplinary approach to harvest fleet route planning was assessed by looking 

into the technological requirements for its implementation, and into the environmental 

effects on soil from the application of the optimisation tool and the economic effects of 

employing the tool in selective harvest. The conclusions made from the different 

disciplinary perspectives are here summarised: 

• The role of the Internet of Things in arable farming and on route planning in field 

operations was reviewed. The methodical focus on implementation, applications 

and their challenges provide new insights for further research studies in arable 

farming and field operations. 

• A proposal for the implementation of a harvest fleet route planning tool is made. 

The Android based system dynamically reroutes the vehicles when alterations to 

the plan occur. The system is tested during harvest operations and is capable of 

monitoring and planning routes for the harvester and grain carts. 

• The risk of soil compaction resulting from vehicle traffic during harvest operations 

is assessed. Even though the harvest fleet route planning tool aims to reduce 

operational time, it reduces traffic occurrences in all fields compared to 

conventional recorded operations. From the results it could be concluded that 

these optimised route planning tools can be used as part of the soil compaction 

mitigation strategy of a farm. 

• Optimised route planning was employed to evaluate the economic effects of 

altering the route in selective harvesting. Different scenarios were studied and 

compared with conventional harvest using autonomous field robot simulations. In 

general, selective harvest was not economically profitable for the cases studied 

due to small grain price differences, even if the harvest capacity is little affected in 

some of the scenarios. 

• Overall perspectives from different disciplines to harvest fleet route planning 

were provided. There is a need to continue to explore the implementation and 

potential applications as well as benefits of these tools by interdisciplinary 

viewpoints. 
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Appendix 

In-field traffic management 

Ole Greenb,c, Alevtina Evgrafovab, Søren Kirkegaard Nielsenb, Gareth T.C. 

Edwardsb, Andrés Villa-Henriksena,b, Liubava Znovab, Frederik Foldagerb,d, Lars 

Juhl Munkholmc and Tommy Dalgaardc 

a Aarhus University, Department of Electrical and Computer Engineering 
b Agro Intelligence ApS  
c Aarhus University, Department of Agroecology 
d Aarhus University, Department of Mechanical and Production Engineering 

(Chapter in: Sustainable soil management DCA Report 121 (2018), pp. 18-19) 

In order to improve energy use, reduce operational costs and minimise negative 

environmental impacts (e.g. soil compaction) induced by intensive heavy-machinery 

traffic, it is necessary to define and implement suitable operational management 

strategies. Different strategies have been proposed for infield traffic management with 

emphasis on: (i) the vehicle or implement, e.g. tyre inflation regulation on the go via tyre 

pressure monitoring system as well as the use of lighter and/or smaller autonomous self-

propelled implements (Green et al., 2014); (ii) on-land ploughing instead of in-furrow 

ploughing; (iii) soil conditions, e.g. soil readiness modelling or optimised route planning 

in order to reduce soil compaction. While some of these strategies are already widely 

known and adopted by concerned farmers, others are still needed further development 

and strategic implementation. Considerable attention has been paid to optimised route 

planning as the strategy that can mitigate soil compaction issues and minimise 

operational time and costs, hence, following sustainable soil management practices as 

well as be easily combined with other strategies for manging in-field traffic. 

The driving route in the field has traditionally been based on the decision capabilities of 

the vehicle operators, i.e. the driver decides on the best route to complete a field 

operation in a minimal time or based on some criteria stated by the farmer, e.g. wildlife 

avoidance planning. However, current research (Bochtis, Sørensen, & Busato, 2014) and 

industrial products (Edwards et al., 2017) are developing systems for optimising route 

planning automatically. Optimised route planning calculates an optimised route for each 

field adaptively according to the vehicles’ behaviour using combinatorial optimisation 

algorithms. The criteria used for the optimisation can include, besides the reduction of 

operational time, geo-referenced information that can be used for the variable rate 

application or/and section control. In order to utilise geo-referenced information and 

achieve higher farming precision by taking the within-field spatial and temporal 
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variability into account, Global Navigation Satellite System (GNSS) technologies should 

be used during field operations. Thus, the in-field optimisation can be achieved by 

simulating planned agricultural operations using the algorithms based on the predictions 

of the shortest total, headland, and refill timing and distances, soil compaction, while the 

site-specific field characteristics and agricultural applications (e.g. fertilizer) and features 

of the fleet vehicles (e.g. tank and carrying capacities) are taken into account. Moreover, 

optimised route planning can be applied to various agricultural operations and, 

especially, valuable during the operations with intensive heavy traffic such as slurry 

application or harvesting, hence, reducing the negative impacts of traffic intensity. 

Furthermore, auto-steering systems will improve the operational performance as this 

system will allow following the path and adapting more precisely to the spatial variability 

than a traditional human-based steering. 

A fleet logistics optimization tool can also include other optimisation criteria such as the 

operational speed, turning trajectory, however, if traffic intensity is a main parameter for 

route optimisation, the operational distance and time will be significantly reduced as the 

number of passes per area as well as the total weight by traffic per area (both 

accumulated and at the specific time) can be reduced. Moreover, the optimal strategy in 

order to follow sustainable soil management practices would be combining as many 

strategies as possible as well as finding a possibility to combine various operational 

functions, usually provided by multiple vehicles, in one vehicle with field data recording. 

The data, collected using agricultural vehicles, can be shared using Internet of Things 

(IoT) technologies and will provide valuable information for soil management practices 

and following operations. Thus, full automation of field operations can provide even more 

accurate measures for reducing production costs while operating in an environmentally 

sustainable manner, e.g. optimising fleets of light-weighted robots for most, if not all, field 

operations. 
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