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Summary

Farmers have access to many data-intensive technolo-

gies to help them monitor and control weeds and

pests. Data collection, data modelling and analysis,

and data sharing have become core challenges in weed

control and crop protection. We review the challenges

and opportunities of Big Data in agriculture: the nat-

ure of data collected, Big Data analytics and tools to

present the analyses that allow improved crop manage-

ment decisions for weed control and crop protection.

Big Data storage and querying incurs significant chal-

lenges, due to the need to distribute data across several

machines, as well as due to constantly growing and

evolving data from different sources. Semantic tech-

nologies are helpful when data from several sources

are combined, which involves the challenge of detect-

ing interactions of potential agronomic importance

and establishing relationships between data items in

terms of meanings and units. Data ownership is anal-

ysed using the ethical matrix method to identify the

concerns of farmers, agribusiness owners, consumers

and the environment. Big Data analytics models are

outlined, together with numerical algorithms for train-

ing them. Advances and tools to present processed Big

Data in the form of actionable information to farmers

are reviewed, and a success story from the Netherlands

is highlighted. Finally, it is argued that the potential

utility of Big Data for weed control is large, especially

for invasive, parasitic and herbicide-resistant weeds.

This potential can only be realised when agricultural

scientists collaborate with data scientists and when

organisational, ethical and legal arrangements of data

sharing are established.
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vector machine, multivariate regression, data owner-
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Introduction

Food production must increase by 70% in order to

feed a world population that is expected to reach 9.6

billion by 2050 (Foley, 2011; Foley et al., 2011). This

challenge is even greater, when we take into account

the scarcity of new arable land, the effects of climate

change on agricultural production and the societal

demand for decreasing the environmental impact of

agriculture (Foley et al., 2011). Weed management will

be of crucial importance, given that crop yield losses

caused by weeds (about 32%) are higher than those

caused by either pests (18%) or pathogens (15%)

(Oerke & Dehne, 2004).

Farmers have access to three categories of data-

intensive technologies to help address the above
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mentioned challenges: (i) Farm Management Informa-

tion Systems (FMIS), which refer to a planned system

for collecting, processing, storing and disseminating

data in the form needed to carry out a farm’s opera-

tions and functions (Fountas et al., 2015); (ii) precision

agriculture, which is the scientific domain that deals

with management of spatial and temporal variability

to improve economic returns and reduce environmental

impact (Blackmore et al., 2003); and (iii) agricultural

automation and robotics, which is the process of

applying robotics, automatic control and artificial

intelligence techniques at all levels of agricultural pro-

duction (Zhang & Pierce, 2013).

However, it is not just farmers who will use Big

Data solutions for weed control. In several European

countries, the number of invasive plants (IAS, invasive

alien species) has significantly increased during the last

decades (De Almeida & Freitas, 2012; Py�sek et al.,

2012). Big Data solutions have been developed to pre-

vent further spread of IAS (P�eknicov�a & Berchov�a-

B�ımov�a, 2016). For example, areas vulnerable to invasive

weeds were identified using species distribution data

and data on local environmental conditions in con-

junction with species distribution models, GIS software

and statistical tools (Guisan & Zimmermann, 2000;

Thuiller et al., 2009). These vulnerable areas can then

be subjected to monitoring. Early et al. (2016) pro-

vided the first global, spatial forecast of weed invasions

in the 21 century by analysing spatial data for the fac-

tors that determine introduction and establishment of

IAS. Big Data analysis has also been used to predict

the spread of IAS with particular preferences for soil,

water and temperature, such as Oxalis pes-caprae

L. (bermuda buttercup), Solanum elaeagnifolium Cav.

(silverleaf nightshade) and Taraxacum spp. (Travlos

et al., 2008; Luo & Cardina, 2012; Travlos, 2013b).

Finally, Big Data analysis will result in a better under-

standing of the biology and ecology of several parasitic

weeds like Orobanche spp. and Phelipanche spp., which

in turn will enable better management (Song et al.,

2005; Prider et al., 2012).

Plant invasions on global and regional scales pose

severe ecological, agricultural and health concerns

resulting in considerable economic losses. Ambrosia

artemisiifolia L. (common ragweed) is an important

agricultural weed, especially in spring-sown crops, such

as sunflower, maize, sugarbeet and soyabean. A main

problem with this plant is its enormous production of

highly allergenic pollen grains, generating huge medical

costs and reduced quality of life among the allergic

population (Fumanal et al., 2007). The highly aller-

genic pollen causes sensitisation of up to 60% of the

allergic population, with annual medical costs of these

allergies amounting to, for example, €110 million in

Hungary and €88 million in Austria (Gerber et al.,

2011). The European Aeroallergen Network (EAN)

pollen database (https://ean.polleninfo.eu/Ean/) holds

information from more than 600 pollen-monitoring

stations from all over Europe. EAN data have been

used to identify large local permanent or expanding

populations of ragweed (�Sikoparija et al., 2009; Thi-

baudon et al., 2010). Combined with other data

sources, this can lead to early detection and eradica-

tion in new areas and the development of a sustainable

management strategy of A. artemisiifolia in several

invaded or potentially susceptible habitats.

Data-driven innovations have already revolutionised

several sectors of the economy. The promise that a

similar revolution in agriculture may provide benefits

is contributing to a growing interest in the application

of Information and Communication Technology (ICT)

in agriculture. Data collection, data modelling and

analysis, and data sharing have become core chal-

lenges, an opportunity for innovation and a growth

area for commercial development. Vast amounts of

data are collected with proximal, airborne or satellite-

based sensors, in situ sensors (i.e. soil moisture sen-

sors), on-farm weather stations and instrumented farm

equipment. This qualifies as Big Data according to the

definition of De Mauro et al. (2016), namely informa-

tion assets that are characterised by high volume, high

velocity and high variety and that require specific tech-

nology and analytical methods for its transformation

into value.

In addition, there is a need to share data across the

supply chain, both to increase the efficiency of the sup-

ply chain and to respond appropriately to agricultural

standards, such as integrated crop and weed manage-

ment. Consumer pressure for more information about

agronomic practices creates technical and business

model opportunities, if the right architectures, analyti-

cal tools and data presentations can be developed. The

growth of open data and linked data provides oppor-

tunities to integrate data from multiple sources and

thus to provide new insights and new services. The

combination and proper analysis of Big Data from

previous records in a wide area, together with specific

measurements and data from field history, can result

in the quick evaluation and management of herbicide-

resistant weeds. This can be further accompanied by

decision-support systems, to find the ideal tailor-made

solutions for each case.

The tools provided by precision agriculture and

other information technologies have not yet moved

into mainstream agricultural management. In general,

adoption of technological innovations depends on

characteristics of the innovation (e.g. cost, complexity),

the innovator and his or her socio-economic
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background (e.g. preferences and educational level of

farmer), the perceived usefulness and ease of use

(Rogers, 1995). This has been confirmed for agricul-

tural innovations (Pedersen et al., 2004; Kutter et al.,

2011; Lawson et al., 2011; Fountas et al., 2015). In

agriculture in general, the adoption of innovations is

also highly dependent on the knowledge support sys-

tem in place (Straub, 2009).

The aim of this study was to provide an overview

of technologies relevant to the application of Big Data

for weed control and crop protection, to highlight

noteworthy examples and to indicate the work that is

still needed to increase the exploitation of Big Data.

The remainder of this study is structured as follows. In

the following three sections, we describe the building

blocks for Big Data in weed control and crop protec-

tion, namely data (Big Data capture, storage and shar-

ing), data analytics (Big Data analytics) and thirdly

delivering information to farmers (delivery of action-

able information to farmers). We then discuss existing

decision-support systems for weed control and crop

protection and describe opportunities for further devel-

opment (current applications of Big Data for weed

control and crop protection). Conclusions and recom-

mendations are given in the final section.

Big Data capture, storage and sharing

Precision agriculture is an information-intensive, cyclic

activity, which can be divided into data collection, data

analysis, decision-making and evaluation of decisions

(Fig. 1) (Fountas et al., 2006). It is useful to charac-

terise decisions based on the planning horizon and to

distinguish strategic, tactical and operational decisions.

An example of a strategic decision is whether or not to

use precision agriculture; an example of a tactical deci-

sion is which crops to include in the rotation; finally,

operational decisions have to be made on a day-to-day

basis regarding the timing of field operations and the

amounts inputs used.

Where does the data come from?

The data in precision agriculture originate from many

sources. Crop and soil management data describe the

operations that are carried out in the field: tilling,

planting, fertilisation, crop protection, weed manage-

ment and harvest, along with the details such as date,

kind of seed or fertiliser or chemicals used, as well as

the amounts and the manner in which they are applied.

The volume of this information is very small, just a

few hundred bytes ha�1 year�1 (Table 1, Fig. 2), and

it is often recorded manually by the farmer in a Farm

Management Information System (FMIS). Another

kind of information concerns samples of soil and

plants that are sent to a laboratory for analysis of tex-

ture, chemical composition and potential presence of

pathogens and weeds. Yields are recorded at the end

of the season and will certainly show up on the

receipts sent by the cooperative or private buyer to

whom the product is shipped.

By far the largest amount of data results from auto-

matic recording with electronic sensors. These include

automated weather stations on farms, soil moisture

sensors and an increasing number of sensors attached

to quads, tractors, harvesters and (semi-)autonomous

ground and aerial vehicles (Table 1, Fig. 2).

Data storage

Once collected, data must be physically stored and

organised in such a way that it can be queried. In the

1960s, relational databases evolved as the standard to

model and store data, in part because relational data-

bases can model alternative types of databases, such as

hierarchical and network databases. The behaviour of

Fig. 1 Presentation of a precision agricul-

ture system (courtesy: University of Thes-

saly, Volos, Greece).
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relational data can be fully described using set theory

(Codd, 1970). There is ample literature using the rela-

tional model to store agricultural data, including work

started by decision support system for agrotechnology

transfer (DSSAT) and continued by the International

Consortium for Agricultural Systems Applications

(ICASA) (Hunt et al., 1994; White et al., 2013) and the

Agricultural Model Intercomparison and Improvement

Project (AgMIP) (Rosenzweig et al., 2013), but also by

others (Van Evert et al., 1999a,b; Steiner et al., 2009).

In Big Data applications, specific requirements with

respect to storing and searching tend to make the use

of relational databases difficult. For example, the data

usually have to be distributed across several machines

due to its volume, and it may moreover be constantly

growing and evolving. In such situations, it might be

challenging to ‘partition’ a relational database manage-

ment system (RDBMS) across multiple machines and

maintain it as new data continue to pour in (Marz &

Warren, 2015). Moreover, searching can be slow in

very large relational databases. To cope with these

challenges, several alternatives for RDBMS are

employed with Big Data systems, including NoSQL

(‘not only’ Structured Query Language) databases like

key value stores (e.g. Riak, http://basho.com/products/

riak-kv/), document stores (e.g. MongoDB, http://

www.mongodb.com), or distributed storage (e.g. Goo-

gle’s Bigtable) (Chang et al., 2008).

Table 1 Volume of data produced by selected data sources. The area of the circles in Figure 2 is related to the volume of data

Symbol Type Subtype

Single measurement

VolumeSize Resolution Frequency

bytes m2 year�1 MB ha�1 year�1

CM Crop management 400 50 000 1 0.00008

AW Weather station 21 0240 500 000 1 0.00420

NA Reflectance N-Sensor ALS 16 152 10 0.01056

GS Reflectance Greenseeker 16 38 10 0.04224

OX Reflectance OptRx 24 38 10 0.06336

NP Reflectance N-Sensor 216 152 10 0.14256

WL Weed locations – 10 1 5 0.50000

UM Reflectance Multispectral camera on UAV 16 0.01 10 160

UH Reflectance Hyperspectral camera on UAV 160 0.01 10 1600

G1 Generic 1 measurement per m2 4 1 1 0.04000

G2 Generic 1 measurement per cm2 4 0.0001 1 400

CM: Data on crop, cultivar, planting date, seed rate, fertilizer applications, pesticide applications – here it is assumed that 100 single-

precision numbers suffice to describe this information, resolution is a field of 5 ha. AW: Hourly measurements of temperature, precipita-

tion, solar radiation, wind speed, air humidity, one station suffices for a farm of 50 ha; NA: Vegetation index SN, time, location; a

working width of 50 m is assumed, one measurement per second, driving speed of 10 km/h; GS: Vegetation index V1, time, location;

OX: Reflectance in three bands, V1, V2, time, location; NP: As NA, but intensity of incoming and reflected light in 56 bands; WL: This

information could be produced by a robot that records the location and species of weeds, on average 1 weed per m2; UM: Reflectance

with multispectral (four bands) camera on UAV; UH: Reflectance with hyperspectral (40 bands) camera on UAV; G1: Generic measure-

ment, once per m2; G2: Generic measurement, once per cm2.
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Fig. 2 Overview of spatial and temporal

characteristics of common measurements.

Horizontal axis: frequency of the mea-

surement (year�1); vertical axis: spatial

resolution of the measurement (10log(m2)).

See Table 1 for explanation of symbols.
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Big Data storage and querying may be made more

efficient through a lambda-architecture (Marz & War-

ren, 2015). With a lambda-architecture, arbitrary

‘views’ (queries) are pre-computed over the stored data;

that is, they are made ready before an actual request

for them is posed. This ensures that the needed infor-

mation can be retrieved quickly when a request is

placed for a specific view. Clearly, pre-computing these

views takes a certain amount of time (say, some

hours). Consequently, new data are available only a

few hours after arrival in the system. This can be com-

pensated through an additional system component (ter-

med the speed layer), which is responsible for

processing new (‘incremental’) data. While this system

part still has to provide high-speed querying on the

data, this is required only on the data increment, and

not on the entire data set, hence allowing for an effi-

cient system overall.

Linked data

Applications of Big Data typically involve the chal-

lenging task of establishing relationships between data

items of different provenance. For example, the term

‘wheat yield’ may refer to ‘yield-as-harvested’ (e.g.

11.6 Mg ha�1, moisture content not known), to ‘dry

matter yield’ (e.g. 10 Mg ha�1), or to ‘yield adjusted

to market-standard moisture content’ (e.g.

11.35 Mg ha�1). The meaning of the term ‘yield’ is

slightly different in each case, and it would be an error

to use them interchangeably. Similarly, yield may be

expressed using units of t ha�1, but also g m�2 or

dt ha�1 (in common use in Germany). Again, errors

will occur if units are not taken into account.

When data are stored in table format (e.g. in a

database, spreadsheet, or text file), the names of col-

umns typically give an indication of the meaning and

the units of the data, but this is rarely conclusive. The

manual intervention that is almost always needed to

bring data from two or more sources together consti-

tutes a significant barrier to the application of Big

Data in agriculture.

A system to address these shortcomings and to

make automated matching of data possible has been

proposed (Berners-Lee et al., 2001). They proposed the

name ‘semantic web’, but the name currently used is

Linked Data. An introduction to recent developments

is available (Allemang & Hendler, 2011). Linked Data

is built on a number of principles. First, every ‘thing’

is given a name: a uniform resource identifier (URI).

Second, this name preferably is a uniform resource

locator (URL) which you can type into a web browser

and then will give you information about the thing. In

the case of the above example, ‘dry matter yield’ would

have a different name (perhaps http://ld.example.org/

dry-matter-yield) than ‘yield adjusted to market-stan-

dard moisture content’ (perhaps http://ld.example.org/

yield-standard-moisture-content). Third, information

about ‘things’ is given in the form of triples, basically

simple sentences of the form <thing1 > <thing2 >
<thing3 > , where the meaning of each part of a sen-

tence can be looked up. If we take ‘ex:’ as shorthand

for http://ld.example.org/, we can for example create

the following triples:

ex:my-measurement ex:has-quantity ex:yield-dry-

matter-basis

ex:my-measurement ex:has-units ex:mg-per-ha

ex:my-measurement ex:has-

quantitative-value

10.0::double

precision

Measurements expressed using Linked Data tech-

nology can be combined without manual intervention,

regardless of where they were collected or where they

were stored, as long as they are described using the

same concepts (or when a mapping exists between con-

cepts). This highlights the importance of shared vocab-

ularies or ontologies. A number of ontology

development efforts are under way. Of particular inter-

est to the domain of weed control and crop protection

are the Global Agricultural Concept Scheme (GACS),

which combines AGROVOC, the CAB Thesaurus and

the NAL Thesaurus into one ontology (http://tester-

os-kktest.lib.helsinki.fi/gacsdemo/gacs/en/), the Plant

Ontology (Jaiswal et al., 2005) and Crop Ontology

(Shrestha et al., 2010). Unfortunately, anyone trying to

use these ontologies will quickly find that many con-

cepts are not yet included, which limits their immediate

usefulness.

The advent of Linked Data has led to the develop-

ment of databases that are optimised to store triples.

Examples are RDF4J (http://rdf4j.org) and Virtuoso

(http://virtuoso.openlinksw.com). Tools such as D2RQ

(http://www.d2rq.org) offer the capability to access

relational databases as if they contained triples.

Ownership and sharing of data

Big Data applications typically involve several data

owners. For research data, the issue of ownership,

archiving and sharing has received ample attention

(King, 2007; White & Van Evert, 2008). The consensus

is that the scientific method calls for sharing data liber-

ally, although care should be taken to respect concerns

such as privacy of people, the need to protect rare spe-

cies and habitats by withholding details about location,

and the need to publish before sharing (Duke & Por-

ter, 2013).

© 2017 The Authors. Weed Research published by John Wiley & Sons Ltd on behalf of European Weed Research Society. 57, 218–233

222 F K van Evert et al.

http://ld.example.org/dry-matter-yield
http://ld.example.org/dry-matter-yield
http://ld.example.org/yield-standard-moisture-content
http://ld.example.org/yield-standard-moisture-content
http://ld.example.org/
http://tester-os-kktest.lib.helsinki.fi/gacsdemo/gacs/en/
http://tester-os-kktest.lib.helsinki.fi/gacsdemo/gacs/en/
http://rdf4j.org
http://virtuoso.openlinksw.com
http://www.d2rq.org
kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight



Sharing research data is, of course, not the same as

sharing data from commercial farms. Tellingly, a sur-

vey of Danish and US farmers showed that many are

even reluctant to use cloud-based storage (Fountas

et al., 2015). However, a decrease in public funding for

agricultural research in recent years has resulted in

fewer scientific experiments in agricultural sciences.

This is at a time when increasingly there is a need for

long-term experiments (LTEs) to investigate issues

such as climate change, where the effects can be

expected to become visible over a long time horizon

(White & Van Evert, 2008). The scarcity of new experi-

ments also reveals the need of extensive exploitation of

already available data to develop efficient integrated

weed management that benefits farmers and the envi-

ronment. Intensively monitored farms may be the

LTEs of the future. When on-farm collected data

becomes an important vehicle for scientific progress,

some of the arguments that apply to sharing scientific

data become applicable to sharing farm data. The dis-

cussion about sharing farm data that does not proceed

beyond the obligation of scientists to make research

data available does not do justice to the topic. A

framework to discuss ownership and sharing is needed.

Ethics is the branch of philosophy that examines

the rights and duties of people in a systematic way. It

seeks to answer questions such as ‘what is the right

way to act’. Ethics has no ready-made answer for our

specific question whether farmers should share produc-

tion data and with whom. Here, we hypothesise that

ethical reasoning can help to structure the argument

and can thus contribute to finding a resolution that is

acceptable to parties involved. We will focus on the

ethical matrix which was proposed by Mepham (2005),

following work by (Beauchamp & Childress, 2001).

The ethical matrix has two dimensions. The first

(column) dimension consists of the three broad cate-

gories in which Mepham (2005) summarises the major

ethical theories. These categories are well-being (related

to utilitarianism: the greatest benefit to the largest

number of people), autonomy (related to deontology:

do as you would be done by) and fairness. The second

(rows) dimension describes the parties that are affected

by the issue at hand. In our case, the parties with ethi-

cal standing are farmers, owners of agribusinesses,

consumers and the living environment (biota).

The ethical matrix is used to record concerns that

exist about a new situation that is envisaged. In our

case, that situation is ‘data collected on commercial

farms is shared’. Each concern about this situation is

entered in the cell of the ethical matrix that is at the

cross between the party affected and the category of

the concern. A possible listing of concerns that is

about sharing farm data is shown in Table 2.

Big Data analytics

Once the relevant data have been properly prepared

and stored, knowledge valuable to users is extracted

through data analytics. Conventionally, agricultural

applications use standard statistical methods, such as

regression, analysis of variance (ANOVA) and princi-

pal component analysis (PCA). Big Data applications

require new methods. First, standard statistics may be

inadequate to deal with the large number of variables

typically found in Big Data applications, and these

variables may be related in a complex, non-linear man-

ner. Second, even the implementation of simple meth-

ods is not straightforward when extremely large data

sets are involved. In other words, devising and imple-

menting a numerically efficient ‘Big Data PCA’ is a

non-trivial task (Balcan et al., 2014). At least two steps

must be considered: adopting an appropriate machine

learning model (e.g. a neural network), and secondly

training the model using an appropriate algorithm (e.g.

a gradient descent method). A third step consists of

measures to ensure privacy, which is of high relevance

in agriculture.

Machine learning models

The goal of a machine learning task is to learn the

relation between input and output, given a set of train-

ing data. For example, given training data (Xi,Yi)

where i = 1,. . .,n, and where a pair (Xi,Yi) represents

measured environmental parameters and the yield for

a certain past season i (Brdar et al., 2011), the goal is

to learn the function f, Y = f (X), which fits best (in

a certain sense) the available training data. A possible

approach is to find f which minimises the average

squared error loss:
X

i

jYi � fðXiÞj2;

but many other forms of losses are also possible. For

computational tractability, one needs to restrict f to a

certain class of functions (e.g. polynomials of order at

most m), such that the above minimisation is feasible.

Generally, the choice of the loss function and the

admissible function class determine different machine

learning approaches or models.

Three machine learning models are widely used and

relevant in agricultural applications (Kastens &

Featherstone, 1996; Baral et al., 2011; Brdar et al.,

2011; Rahaman et al., 2015; Agrimetrics, 2016) and

Big Data (Davies & Frigola, 2014; Hsieh et al., 2014;

Najafabadi et al., 2015). These are first, neural net-

works (NNs, see also the related concept of deep learn-

ing (Najafabadi et al., 2015)), second, (nonlinear)

© 2017 The Authors. Weed Research published by John Wiley & Sons Ltd on behalf of European Weed Research Society. 57, 218–233

Big Data for weed control 223

kool014
Highlight

kool014
Highlight



support vector machines (SVMs) with kernels and

third, graphical models (GMs). Other relevant models

include (group)-sparsity and other structured models

(Slavakis et al., 2014), models involving spatial data

(Vatsavai et al., 2012) and linear and non-linear

dimensionality reduction and clustering methods

(Kashyap et al., 2015).

Neural networks (NNs) have proved successful in

speech recognition and image and natural language

processing (Xie et al., 2014). Their name indicates a

resemblance in structure to actual, biological neural

networks. Namely, with NNs, function f is modelled as

a functional composition of basic computational ele-

ments, for example. neurons, where each neuron con-

sists of a linear activation function, parameterised by a

weight vector w and a non-linear transfer function s

(e.g. a sigmoid function (Bishop, 2006; Hinton et al.,

2006)). The neurons are organised in layers (the num-

ber of layers is the depth of a NN), each of which has

a certain width. Common loss functions are squared

error and cross-entropy loss, and a popular numerical

algorithm for training NNs is back propagation and

its variants (Bishop, 2006; Hinton et al., 2006).

Neural networks have been used in many agricul-

tural use cases, including prediction of yield (Baral

et al., 2011) (tactical decision), farmers’ risk prefer-

ences (Kastens & Featherstone, 1996) (strategic or tac-

tical), and site-specific herbicide management (SSHM)

(Eddy et al., 2008) (operational). With advances in

imaging technology and computer processing speed,

methods like the one proposed by Eddy et al. (2008)

seem promising for real-time detection and mapping of

weed species for SSHM in agriculture.

Support vector machines (SVMs) with kernels –
Given a training data set, SVMs seek a function f

which makes at each data point an error of at most e,
where e is a predefined small positive number, as

explained by Smola and Sch€olkopf (2004). SVMs were

initially proposed for linear models. A non-linear ver-

sion can be made by first transforming input X into a

(higher dimensional) feature space through a non-lin-

ear mapping Φ(X) and then applying standard linear

SVMs over features Φ(X). This can be done without

ever explicitly calculating features Φ(X); thus, there is

no need to work directly in the (usually very high

dimensional) feature space. Namely, function f can be

expressed as a linear combination of inner products

with data points Xi’s. That is, it is only needed to

define (and subsequently compute) a Kernel function

K(x1,x2), which defines the inner products <Φ(x1),

Table 2 Ethical matrix applied to the envisaged situation: ‘data collected on commercial farms are shared’

Well-being Autonomy Fairness

Farmers Income Liability Choose what to share hoose how to farm Receive payment or other benefit

for data as compensation for

shift in economic power

No backlash from government

access to data

Agribusiness

owners

Innovate with data-based methods Equitable trading of data

Consumers Safe food, high quality Traceability for informed purchasing decisions Sufficient, affordable food

Biota Conservation Biodiversity Sustainability

Each row lists concerns that pertain to a stakeholder group; concerns are grouped by the three broad categories of Mepham (2005). For

each concern identified, an attempt is made to determine how it will be affected by the envisaged new situation. For farmers, income is

a direct measure of farmers’ well-being. Sharing data with scientists will lead to new scientific insights that will in turn allow farmers to

improve profitability and sustainability of their business. On the other hand, sharing data with businesses may increase the economic

power of those businesses and compromise the ability of farmers to sell at attractive prices. A farmer may risk liability suits, for example

when records show that equipment malfunctioned and (unintended) contamination of the environment occurred. The autonomy of a

farmer could be compromised when he or she loses control over the flow of data. Also, the farmer’s sense of identity may be compro-

mised when critical farming decisions are made by consultants or decision-support software. On the other hand, new insights resulting

from sharing data with scientists may provide the farmer with more options to manage the farm and to make better decisions. Fairness

requires that a farmer be compensated for the value that others derive from the data he or she shares. Farmers are concerned that gov-

ernments may use farm data to argue for stricter controls on, for example, emissions of nutrients and chemicals. Agribusinesses need

access to farm data to generate income. For developing innovative data-based services (autonomy), agribusiness is dependent on the

ability to access farm data. Businesses require an equitable regulatory framework (fairness) with respect to acquiring, storing, transfer-

ring and using farm data. Consumers will benefit from an increase in safety and quality of food made possible by new insights when

farm data are shared with scientists. Tracking and tracing the origin of products and the agricultural practices used to produce them

with special focus on the pesticides used (and especially residual herbicides) will allow consumers to make informed purchasing decisions

(autonomy). New insights derived from sharing farm data with scientists will lead to an increase in the availability of food and increase

fairness for consumers. Finally, wildlife and the living environment will benefit (fairness) when sharing data lead to new scientific knowl-

edge and less pollution (well-being), preservation of biodiversity and native species, and when threatened species and rare breeds are pre-

served (autonomy).
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Φ(x2)> in some feature space. Many easily computable

functions (e.g. polynomial kernels, exponential kernels)

turn out to be valid kernel functions (valid inner prod-

ucts in some feature space), which makes SVMs very

efficient in practice.

Support vector machines have been widely used in

agricultural applications. Examples include prediction

of agricultural yields based on relevant environmental

parameters (Brdar et al., 2011) (tactical decisions) and

detection and classification of plant diseases (Rumpf

et al., 2010) (operational decisions).

Graphical models (GMs) In a standard setting, GMs

are not concerned with input–output modelling, but

rather they model interdependencies among a set of

(input) variables (Jordan, 2004; Wainwright & Jordan,

2008). Variants exist that model input–output relations
also, such as conditional random fields (CRFs) (Laf-

ferty et al., 2001; Wytock & Kolter, 2013). Differently

from NNs and SVMs, CRFs adopt a probabilistic

framework; that is, they model input–output relations

through a (conditional) probability distribution P(Y |
X), rather than an explicit function of the form Y = f

(X). However, the underlying principle is similar: given

a training data set (Xi,Yi), i = 1,. . .,n, one again learns

the probability distribution P(Y | X) from a certain

class of distributions (e.g. Gaussian), by minimising an

appropriately defined loss function. Once the ‘best’ dis-

tribution P(Y | X) is learned (the training has been

completed), one can perform inference (e.g. predict a

new output Yi based on a given new input Xi) by find-

ing a maximum a posteriori estimate of Yi, that is by

finding Yi which minimises P(Y | Xi) viewed as a func-

tion of Y.

With CRFs and with GMs in general, the key object

of the (joint) probability distribution of interest is

associated with a graph, whose nodes are the individ-

ual variables Xi’s and Yj’s. Then, the probability distri-

bution is defined as a product of factors associated

with graph cliques (all-to-all connected subsets of

nodes). The graph structure allows for natural mod-

elling of complex phenomena in applied fields, as

noted in Jordan (2004), for example for modelling spa-

tial or spatio-temporal processes (Vatsavai et al.,

2012). Introducing the graph formalism and structure

with GMs turns out to be quite useful in constructing

efficient numerical algorithms to perform inference.

The so-termed belief propagation-type algorithms. (e.g.

Wainwright & Jordan, 2008) and their various approx-

imations (e.g. Donoho et al., 2009) are very frequently

used methods for inference over GMs.

Graphical models have significant potential for

modelling in Big Data agricultural applications. A

variant of GMs, spatial random fields, can be used to

model various spatial phenomena, such as the location

prediction problem, for example prediction of spatial

distribution of a disease within a field (Vatsavai et al.,

2012). This may correspond with tactical or opera-

tional decisions. GMs are also used for modelling

traits’ interdependencies with large scale phenotyping

(Rahaman et al., 2015; Agrimetrics, 2016).

Missing data and variable spatio-temporal resolu-

tions are two specific challenges that arise with

machine learning in agriculture. There are many situa-

tions where certain planned data entries are missing

(e.g. a sensor malfunctioned, or cloud cover prevented

acquisition of satellite imagery). It is thus necessary to

have machine learning models that can cope with miss-

ing data; see for example Slavakis et al. (2014) for a

class of such robust models. When confronted with a

lack of data on lifecycle stages during the development

of a model to predict the spread of invasive weeds,

Kueffer et al. (2013) addressed this problem using life

cycle data of naturally established individuals to

improve the accuracy of predictions about the distribu-

tion range of the invasive weeds (Ram�ırez-Albores

et al., 2016). Agricultural data often have variable res-

olution in time and space (Table 1). Models are needed

which can effectively treat such data (Klein et al.,

2015).

Numerical algorithms: parallel and distributed

optimisation

Once the prepared data are ready for processing, and

an appropriate machine learning model with parameter

set w has been adopted, a numerical algorithm is used

to produce the set of parameters w* which best explain

the data. Usually, this task is performed by solving an

optimisation problem, namely that of minimising an

appropriately defined loss function (e.g. a squared loss)

with respect to model parameters w:

minimise fðw;DÞ;
parameterised by the available data D = {(Xi, Yi),

i = 1,. . .,n}. For example, with classification tasks, the

loss function f can be logistics or hinge loss (Bishop,

2006). When function f is convex, this optimisation

problem can in principle be efficiently solved by stan-

dard numerical optimisation methods (e.g. gradient

descent or Newton method.) However, in Big Data

applications, a major challenge is that the size of the

data set D and possibly the dimension of the unknown

parameter set w are so large that the problem cannot

be solved in a reasonable time with standard numerical

optimisation methods on a single standard computer.

Therefore, there is a need to develop parallel and dis-

tributed optimisation methods that partition the prob-

lem of interest into multiple smaller problems, each of
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which is solved by a separate processor (Jakoveti�c

et al., 2014; Slavakis et al., 2014). There are now par-

allel and distributed methods that can solve huge prob-

lems. For example, a (convex) logistics loss problem

with an order of 70 000 data points of size 20 000 (real

numbers) was solved in less than 10 s using 40 parallel

processes (Facchinei et al., 2015).

Several challenges arise when designing Big Data

algorithms. The first challenge, scalability, refers to

how computational time reduces when the number of

processors is increased. A naive consideration would

imply that the time decreases linearly with the number

of processors. However, the delays due to interproces-

sor communications cause more complicated (and less

efficient) scaling (Hong et al., 2015). A second chal-

lenge is that in many agricultural applications, analyt-

ics should be able to respond in real time to changes

in the sensed data (e.g. weed emergence, weather

changes, plant stress). This is also true in the case of

evaluation of herbicide-resistant weeds, where a rapid

decision and response are required (Travlos, 2013a).

That is, algorithms should be able to quickly adapt

their solutions based on the changes in the incoming

streaming data. This can be, in many cases, accom-

plished through online learning and stochastic optimi-

sation algorithms (e.g. stochastic gradient descent)

(Duchi et al., 2011). Essentially, such methods allow

for computationally inexpensive solution updates (e.g.

a gradient descent step) accounting for only newly

acquired data samples, as opposed to revisiting all the

data samples at each algorithm iteration. A third chal-

lenge, privacy preservation, is discussed in more detail

in the next section on Data analytics under privacy

constraints.

Several commercial and open source Big Data soft-

ware libraries and platforms exist. Apache Hadoop

(Apache, 2016) includes several modules: (i) Hadoop

Distributed File System (HDFS) – a distributed file

system for high-throughput access to application data,

(ii) YARN – a framework for job scheduling and

computer cluster resource management, (iii) MapRe-

duce – a system for parallel processing of large data

sets, (iv) Mahout – a machine learning tools library

and (v) Spark – a compute engine and a programming

model which supports a wide class of tasks, including

machine learning, stream processing and graph compu-

tation. GraphLab (Low et al., 2010) is a framework

for developing efficient and provably correct parallel

machine learning algorithms, very expressive for asyn-

chronous iterative algorithms with sparse computa-

tional dependencies. Package pbdR (Ostrouchov et al.,

2012) is a software package for Big Data based on the

R programming language. PAIRS is a platform specifi-

cally designed for handling geo-spatial data which has

been used for agriculture-related Big Data (Klein

et al., 2015).

Data analytics under privacy constraints

A very important issue with data analytics in agricul-

tural applications where multiple parties (e.g. farmers)

are involved is that of data privacy, as farmers may

not be willing to disclose or share their private data or

practices. On the other hand, exploring hidden knowl-

edge from all parties’ data can clearly yield improved

solutions with respect to the solutions based on parties’

individual data sets.

There have been significant advances in privacy-

aware data analytics (Dreier & Kerschbaum, 2011;

Fung & Mangasarian, 2013; Sarwate & Chaudhuri,

2013; Yan et al., 2013; Duchi et al., 2014; Weeraddana

et al., 2014; Xie et al., 2014; Nozari et al., 2016). How-

ever, a significant amount of research and development

is still needed to devise tools which simultaneously

ensure the following: 1) very high degrees of privacy,

2) handling huge data volumes and 3) handling very

generic machine learning models or tasks.

We consider the following conceptual system model

(Fig. 3). There is a group of N parties, for example

farmers, each holding its own private data Di. Parties

outsource messages mi (Di) related to their private data

to an analytics provider. (One can think of mi (Di) as a

‘disguised’ version of Di.) Subsequently, the provider

processes messages from all parties and sends the

obtained result to all parties. One can think of this

result as a ‘disguised’ version of the optimal solution

that a (hypothetical) provider would compute, if it had

available all data Di’s and from which each party can

reconstruct this optimum. We assume that there is also

an adversary who, based on the observed messages

(and possibly the observed result), attempts to recover

the parties’ private data. The goal is to design mes-

sages and the provider’s analytics, such that the

method is computationally feasible and the parties can

reconstruct the optimum from the result, while the

adversary cannot (or is at least unlikely) to discover

private data Di’s.

Existing works to solve the described problem can

be broadly categorised into two classes (Weeraddana

et al., 2014): (i) cryptography-based approaches and (ii)

non-cryptography-based approaches.

Cryptography-based approaches – With this class,

each party creates message mi (Di) as an actual, classi-

cal encryption (e.g. homomorphic encryption (Xie

et al., 2014)) of Di with a privately known key. Subse-

quently, analytics is performed over the encrypted data

(for example, via secure multiparty computation (Xie

et al., 2014)) and the encrypted result is sent back to
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all parties, which then decrypt the result. This

approach obviously allows for a ‘perfect privacy’, in

the sense that the adversary cannot reconstruct private

data (without having the parties’ private keys) in a fea-

sible amount of time. The price of ensuring ‘perfect

privacy’ is the large amount of computer time needed

to generate solutions. The reason is that each non-

encrypted bit of information corresponds to a large

sequence (perhaps a thousand) encrypted bits, and

hence, any arithmetic operation over the encrypted

symbols is much costlier than the equivalent operation

in the standard, non-encrypted domain. Currently, for

many machine learning models, cryptography-based

approaches are computationally unfeasible. As an illus-

tration, solving a linear program (LP) with 282

unknowns and 180 constraints (a moderate size prob-

lem) with current cryptography-based solutions as of

2011 is estimated to take seven years (Dreier & Ker-

schbaum, 2011). However, for relatively simple models

and tasks, cryptography-based approaches might be

good solutions. For example, Xie et al. (2014) propose

a cryptography-based system for neural networks and

conjectures their practical feasibility for inference tasks

(e.g. performing classification of a data point for an

already trained neural network) and perhaps also

learning tasks for simple models (e.g. training a moder-

ate size neural network with a small number of layers).

Non-cryptographic approaches achieve some degree of

privacy through algebraic data transformations. That is,

each message mi (Di) represents some (deterministic or

random) algebraic transformation of Di. Naturally, such

transformations are sought to be ‘non-invertible’, in the

sense that the adversary cannot (or is very unlikely) to

recover private data by observing the messages. For

example, Dreier and Kerschbaum (2011) and Fung and

Mangasarian (2013) address solving LPs, where each

party multiplies its own real-valued private data vector

Di by a privately generated random matrix. The main

advantage of the non-cryptography-based solutions with

respect to the cryptography-based ones is that data ana-

lytics is performed directly over the transformed, but non-

encrypted data (real numbers, vectors and matrices).

Hence, they do not introduce huge computational over-

heads of performing algebraic operations over encrypted

sequences. However, this in general comes at the cost of

a certain information leakage, that is, no ‘perfect privacy’

is ensured. Currently, for models like LPs, there exist

efficient methods to solve moderate sized problems with

a very low information leakage (Dreier & Kerschbaum,

2011). As an illustration, an LP with 282 unknowns and

180 constraints can be solved within 25 min (compared

with the 7 years’ execution time of cryptography-based

approaches), while ensuring that the adversary can guess

the problem solution with the chance lower than 10�1408

(Dreier & Kerschbaum, 2011). Further research is

needed to devise methods which handle very general

models and huge data scales.

Besides the described ‘algebraic transformation’

approaches, there are non-cryptographic approaches

like the methods based on the notion of e-differential
privacy (Sarwate & Chaudhuri, 2013; Duchi et al.,

2014; Nozari et al., 2016). Further, other more elabo-

rated models than the one considered in Fig. 3 are cer-

tainly relevant and have been studied. For instance,

parties can be arranged in a network (e.g. induced by

their geographical proximity or by their business rela-

tions), where each party itself possesses its own data

analytics (computing) resources, that is not only the

data but also the actual analytics algorithm is dis-

tributed over the N parties. The parties then collabora-

tively solve the common learning task through

exchanging messages along links in the network. The

adversary can observe messages from all (or a subset

of) links (Yan et al., 2013; Nozari et al., 2016). In such

setups, interestingly, some standard, ‘general-purpose’

iterative distributed methods, like the alternating direc-

tion method of multipliers, exhibit certain privacy-

enabling properties (Weeraddana et al., 2014).

Delivery of actionable information to
farmers

The goal of Big Data analytics in weed control and

crop protection is to provide actionable information

...

Party 1

Party 2

Party N

D1

D2

DN

m1(D1)

m2(D2)

mN(DN)

Messages

Data analytics 
provider

Adversary:
observes messages

ResultFig. 3 Conceptual system model underly-

ing privacy-aware analytics.

© 2017 The Authors. Weed Research published by John Wiley & Sons Ltd on behalf of European Weed Research Society. 57, 218–233

Big Data for weed control 227

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight

kool014
Highlight



for better management decisions by farmers and their

agri-food partners. The information can be used in

strategic, tactical and operational decisions, and at dif-

ferent spatial scales on the farm (fields, management

zones or grids within field, individual plants, for exam-

ple Christensen et al. (2009)), or at regional or agri-

food chain level. But no matter what type of decision

is made or what the scale of application is, digital

information must be presented to farmers in a straight-

forward and comprehensible way.

The simple computerised record-keeping solutions of

early years have evolved into comprehensive Farm

Management Information Systems (FMIS). Sørensen

et al. (2010) defined an FMIS as a planned system for

collecting, processing, storing and disseminating data in

the form needed to carry out a farm’s operations and

functions. Essential FMIS components include specific

farmer-oriented designs, dedicated user interfaces, auto-

mated data processing functions, expert knowledge and

user preferences, standardised data communication and

scalability. It has been stressed that the evolution of

FMIS must take into account the social aspects of busi-

ness processes (Fountas et al., 2015).

There is not always a smooth path to commercial

availability, even for systems that have already shown

their potential in a research setting. In the Nether-

lands alone, several commercial initiatives to develop

geo-information system (GIS) platforms for use in

agriculture have failed during the last 10–20 years.

However, a system called ‘Akkerweb’ (in English:

Farm Maps; see www.akkerweb.nl) is currently gain-

ing traction. Akkerweb is the product of a public–pri-
vate partnership between Agrifirm, the largest

farmers’ cooperative in the Netherlands, and

Wageningen University & Research, the leading agri-

cultural research organisation in the Netherlands.

Akkerweb allows geo-data acquisition, management,

visualisation and use at the farm level, in combina-

tion with a standard FMIS (Kempenaar et al., 2014b,

2016). The roots of Akkerweb can be traced to the

development in 2012 of a decision-support system for

control of plant parasitic nematodes NemaDecide

(Been et al., 2004, 2007). Akkerweb offers GIS func-

tionality and a number of general free for use appli-

cations (‘apps’), such as a cropping scheme app, a

satellite data app and a sensor data app, to visualise

and analyse soil and crop data and to generate task

(prescription) maps. Akkerweb also contains several

subscription-based apps for variable rate application

of pesticides and fertilisers. The success of Akkerweb

is due to the combination of its ICT infrastructure

and its science-based content, the bottom-up develop-

ment with users in the driver’s seat, and the effective

cooperation between a farmers’ cooperative, a

research institute and an IT company with the know-

how to build and maintain the required software.

Akkerweb is an open platform, in the sense that third

parties can also use the Akkerweb platform to develop

and offer fee-based services. Today, data of ca. 30 000

parcel crop years are stored using Akkerweb.

Current applications of Big Data for weed
control and crop protection

It is useful to consider strategic, tactical and opera-

tional decisions separately and outline the specificities

for each of these.

Strategic decisions

NemaDecide is a system to support strategic decisions

on the control of plant pathogenic nematodes (Been

et al., 2004, 2007). The system is based on a model of

the population dynamics of nematodes and takes into

account the presence of host plants, specific crop rota-

tions, soil analysis data and efficacy of control meth-

ods. GeoNema (Haverkort & Kempenaar, 2016) is the

NemaDecide decision-support system in a GIS plat-

form accessible via Akkerweb. Farmers can apply soil

analysis data from laboratories in combination with

the decision support, to decide on optimal crop rota-

tions and control strategy, for example to make a task

map for site-specific control.

In weed and disease control, the use of population

model information to make strategic decisions in crop

rotation management is less advanced. A DSS on weed

control would be especially useful if it can contribute

to effective weed control methods that minimise the

development of herbicide-resistant weeds. Decision

support might also be given in the form of predicting

which mix of cultivars of certain crops is most likely

to maximise yield and minimise risk (Marko et al.,

2016). In this study, the effect of weeds, pests and dis-

eases on yield was not explicitly considered, but this

could be included.

The data that need to be collected in order to sup-

port strategic decisions on weed control include the

occurrence of weeds (kind or species, density), com-

bined with soil data, management, crop yield and, of

course, weather. These data can be used to derive risk

factors for weeds and to determine how effective weed

control measures are. Several model-based decision-

support systems for weed management in arable crops

are already available, taking advantage of the tank of

Big Data (Berti et al., 2003; Rydahl, 2004; Parsons

et al., 2009).

The algorithms that will be useful to support strate-

gic decisions in crop protection include Bayesian
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parameter estimation methods which can be used to

(better) parameterise population dynamics models,

possibly using inverse modelling. It may also be possi-

ble to use NNs to develop non-mechanistic models of

cause and effect, especially in the case of many factors

with weak influence, such as soil pH, soil organic mat-

ter content, CEC and soil texture.

Tactical decisions

In several countries, decision support for weed control

is available in the form of recommendations for herbi-

cide selection, herbicide rate and time of application,

for example Crop Protection Online (Murali et al.,

1999; see also https://plantevaernonline.dlbr.dk/cp/d

ocuments/InfoFactSheet2.pdf) in Denmark and Gewis

(http://www.agrovision.nl/sectoren/teelt/producten_voor_

de_teler/crop/gewis/) in the Netherlands. These rec-

ommendations are based on data on weed species,

crop sensitivity and climatic conditions. These kinds

of systems can also be used to optimise the applica-

tion of fungicides and insecticides, whether or not in

combination with early warning systems for infection

of crops by diseases. Attempts are now being made

to put these decision-support systems in GIS-plat-

forms. This is the case for variable rate application

of soil herbicides. The Akkerweb recommendation

for variable rate application of soil herbicides uses

data on spatial variation in soil organic matter, CEC

and pH, in combination with data on soil moisture,

sensitivity of the crop to the herbicide, climate con-

ditions, FMIS data and weed maps, in order to

make task maps for variable rate application taking

into account the relevant spatial variation. This has

resulted in a reduction in herbicide use of 10–20%
compared with uniform treatment of the field when

applied at a resolution of 10–30 m2 grids (Kempe-

naar et al., 2014a).The power of this method can

also be illustrated with an effort in which data on

the application of fertiliser N and resulting maize

yields are pooled across experiment sites and years.

This has led to more specific and better fertiliser rec-

ommendations (Sawyer, 2010).

The data that are needed for Big Data supported

decisions in weed control include spatial information

on weed occurrence, landscape position, soil character-

istics and weather. Data on weed occurrence are tradi-

tionally collected on an intermittent basis in

experiments (Gerhards et al., 1996). Nowadays, this

information can be obtained on a large scale by log-

ging the occurrence of weeds as they are detected by

weed-detection software fed by cameras on robots or

on spray booms. Alternative methods include using a

camera mounted on an unmanned aerial vehicle

(Perez-Ortiz et al., 2016). Landscape position can be

obtained from a Digital Elevation Model (DEM) on

the basis of the logged position.

Useful algorithms include probabilistic reasoning to

estimate parameters of population dynamics models.

Also useful will be neural networks (NN) to link cause

and effect where insufficient knowledge about underly-

ing mechanisms is available.

Operational decision

Autonomous robotic weed control depends on accu-

rate information on the position and determination of

weeds in crops. Although much scientific progress has

been made in this area (e.g. Bakker et al., 2006, 2010),

certainly in the field of algorithms for weed-detection

(Eddy et al., 2008), commercial use is still limited

(Merfield, 2016). The aim of these kinds of efforts is

illustrated by a prototype weed control robot that is

truly autonomous (Van Evert et al., 2011). In this

robot, weed detection is combined with an autono-

mous platform and a mechanical weed control device

that uses the information to destroy the tap root of

Rumex obtusifolius L. (broad-leaved dock) in grass-

lands with high accuracy.

The most useful data are also the hardest to obtain:

labelled images. Labelling can be performed by outlin-

ing the weed or by simply noting whether a weed is

present or not. Typically, labelling is performed by

humans and is extremely time-consuming. For opera-

tional decisions, the algorithms that are most useful

for classification are SVM and NN.

The cases above illustrate how data can be used to

obtain actionable information for weed control and

crop protection. We expect this will grow in the future

when more data layers, models and data analytics

become available. The model parts, either statistical

models or agronomic models, will become better when

farmers share data to better estimate the parameters of

the models.

Conclusions and recommendations

In this paper it was argued that a new conceptual

model for weed control and crop protection should be

developed which consists of three elements: (i) capture

and store data, (ii) analyse data and (iii) generate rec-

ommendations. We put forward the view that inte-

grated solutions for weed control and crop protection

are needed. Such integrated solutions require simulta-

neous advances in agricultural science, in ICT, in col-

laboration between supply chain partners (co-

innovation), in respecting the interests of all parties

involved, and in legal frameworks. In the area of
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science, new knowledge is needed which will allow us

to use historical data to predict the occurrence (time,

location, severity) of weeds, pests and diseases.

Research is needed on the interaction between real-

time data collection on weed occurrence, soil and cli-

matic conditions during the growing seasons. These

data should be the basis for building models for the

physiology and behaviour of weeds at given climatic

conditions, which should be organised in a systematic

way and use the appropriate Big Data analytics to

deliver the best decisions. Technical advances are

needed to allow us to integrate data from various

sources. Here, the most likely avenue to success is

through semantic technologies and the most pressing

need is for appropriate ontologies to be developed.

Any integrated solution will require the collaboration

of supply chain partners, even if they are many, and

even if they are commercial competitors. In the

Netherlands and some other countries, farmers’ coop-

eratives play an important role in establishing effective

working relationships between supply chain partners.

This example may need to be emulated by farmers

elsewhere, and indeed by the many enterprises, large

and small, that are offering services. We have made

the case that safeguarding the interests of all partners

will be helpful in establishing successful collaboration.

In case of conflicting interests, ethical reasoning may

help to reach understanding between parties. Data

sharing protocols may need to be developed that can

be used as templates in commonly occurring situations.

Agreements between parties must be formalised in leg-

ally binding contracts and national and international

law must be in place to support this. Creating proto-

cols and reaching agreements ultimately is based on

trust; this trust has to be earned by the parties that

want to be involved.

In recent years, significant advances have been

made in developing general-purpose tools and methods

for Big Data capture, storage and analysis, as well as

some emerging customised systems and applications in

the agri-food domain. An interdisciplinary effort is

required to overcome remaining challenges and fully

realise Big Data opportunities in agriculture. In the

case of weeds, many opportunities may arise, especially

for invasive, parasitic or herbicide-resistant weeds. This

effort requires the involvement of agricultural experts,

of computer and data science experts, as well as

advances in terms of organisational, ethical and legal

arrangements.
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