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Abstract
Cover crops are gaining traction in many agricultural regions, partly driven by 
increased public subsidies and by private markets for ecosystem services. These 
payments are motivated by environmental benefits, including improved soil health, 
reduced erosion, and increased soil organic carbon. However, previous work based 
on experimental plots or crop modeling indicates cover crops may reduce crop yields. 
It remains unclear, though, how recent cover crop adoption has affected productivity 
in commercial agricultural systems. Here we perform the first large-scale, field-level 
analysis of observed yield impacts from cover cropping as implemented across the 
US Corn Belt. We use validated satellite data products at sub-field scales to analyze 
maize and soybean yield outcomes for over 90,000 fields in 2019–2020. Because 
we lack data on cover crop species or timing, we seek to quantify the yield impacts 
of cover cropping as currently practiced in aggregate. Using causal forests analysis, 
we estimate an average maize yield loss of 5.5% on fields where cover crops were 
used for 3 or more years, compared with fields that did not adopt cover cropping. 
Maize yield losses were larger on fields with better soil ratings, cooler mid-season 
temperatures, and lower spring rainfall. For soybeans, average yield losses were 3.5%, 
with larger impacts on fields with warmer June temperatures, lower spring and late-
season rainfall, and, to a lesser extent, better soils. Estimated impacts are consistent 
with multiple mechanisms indicated by experimental and simulation-based studies, 
including the effects of cover crops on nitrogen dynamics, water consumption, and 
soil oxygen depletion. Our results suggest a need to improve cover crop management 
to reduce yield penalties, and a potential need to target subsidies based on likely yield 
impacts. Ultimately, avoiding substantial yield penalties is important for realizing 
widespread adoption and associated benefits for water quality, erosion, soil carbon, 
and greenhouse gas emissions.
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1  |  INTRODUC TION

Cover cropping is a key tenet of conservation agriculture that in-
volves planting non-cash crops on agricultural fields to provide soil 
cover between primary crop growing seasons. In the United States, 
both federal and state policies increasingly encourage seeding cover 
crops in the fall. For example, the United States Department of 
Agriculture's (USDA's) Environmental Quality Incentives Program 
has provided more than $100  million of incentives for cover crop 
adoption each year since 2016 (Wallander et al., 2021), and the Risk 
Management Agency has recently added an incentive through the 
Pandemic Cover Crop Program, in the form of reduced insurance 
premiums. The rationale for subsidizing cover crops is that maintain-
ing some vegetation cover on agricultural fields in the off-season 
may provide substantial public benefits that extend well beyond 
the private benefits experienced by the farmer implementing the 
practice. Prominent among these expected benefits are (i) large 
reductions in runoff and leakage of nitrogen (N) into streams and 
groundwater, with associated reductions in health and environmen-
tal impacts, (ii) increased carbon sequestration in agricultural soils, 
with associated reductions in net national greenhouse gas emissions, 
(iii) reduced soil erosion, and (iv) reductions in chemical use for weed 
control (Blanco-Canqui et al.,  2015; Daryanto et al.,  2018; Jacobs 
et al., 2022; Speir et al., 2022).

Overall, the number of farmers practicing cover cropping has 
increased in recent years, at least partly due to these recent policy 
incentives (Wallander et al.,  2021). The total cropland area in the 
United States planted with cover crops in 2017 (6.2 million ha) was 
~50% higher than reported in 2012 (NASS, 2021) and has continued 
rising in the past half-decade. Overall prevalence is low, however, at 
roughly 5% of cropped area in 2017.

Despite the clear policy momentum around cover crops, many 
questions remain about the potential consequences of a widespread 
shift toward this practice. Prominent among these questions are 
to what extent yields of the primary crops are affected by cover 
crops. Beneficial effects on yields could amplify some of the bene-
fits mentioned above as well as increase farmer revenue. Negative 
yield effects, in contrast, could lead to subsequent abandonment of 
the practice and reversal of the benefits mentioned above. Even if 
subsidies were enough to maintain the practice in the face of yield 
penalties, the public benefit could be substantially reduced because 
of indirect effects on land use in neighboring areas (Villoria, 2019).

One approach to understanding the yield effects of cover crops 
has been experimental field trials. These trials often find slight yield 
losses for primary crops. For instance, a recent review of 106 studies 
across 372 sites around the world reported an average yield reduc-
tion of 4% (Abdalla et al., 2019). However, these effects appear to 
vary considerably depending on many factors, including the agri-
cultural region, the combination of cover and primary crop types, 
weather conditions, and management practices. In reviewing exper-
iments in North America, for example, Marcillo and Miguez (2017) 
reported that maize yields, on average, were unaffected by cover 
crops, but results varied widely based on the type of cover crop, the 

level of fertilization, and the date of cover crop termination. In con-
trast, Malone et al.  (2022) found maize yield reductions of 6%–9% 
when cover crops were established successfully in the US state of 
Wisconsin. In experiments in the Argentinean Pampas, maize yields 
were reduced by 8% when following a non-legume cover crop com-
pared with a fallow control but increased by 7% when following a 
legume cover crop (Alvarez et al., 2017).

A second approach has been to simulate the effects of cover 
cropping with agroecosystem models that represent the biophysical 
and biochemical processes governing crop growth and soil–plant–
atmosphere interactions, benchmarked and tested against field 
data. A recent study (Qin et al.,  2021) for Illinois used the ecosys 
model to study the effects of cover crops on both maize and soy-
bean yields. They estimated that a rye cover crop led to an aver-
age of 3.9% loss of maize yields, but with minimal effect on soybean 
yields. As with experimental studies, they also report a strong de-
pendence on whether the cover crop was a legume or non-legume 
species, whether the field was well fertilized, and whether the cover 
crop was terminated early or late relative to the sowing of the pri-
mary crop.

The clear picture emerging from experiments and models is 
that cover crops can meaningfully affect the productivity of pri-
mary crops but that the exact impacts will depend on the environ-
ment and the details of implementation, both of which differ from 
farm to farm. Thus, results from existing work may have limited 
external validity when pertaining to farmers' fields. The question 
of how much, if at all, the recent adoption of cover crops has af-
fected productivity in commercial agricultural systems remains 
largely unanswered.

In this study, we use a third approach that uses data from actual 
farmer fields, thus avoiding potential problems arising from a lack of 
external validity. Specifically, we deploy methods based on satellite 
data to observe both the adoption of cover cropping and the yields 
of maize and soybeans throughout six states in the heart of the US 
Corn Belt. These observations, which span more than 90,000 fields, 
are then used in a causal forests analysis to measure the incremental 
yield impact of adopting cover crops.

2  |  DATA AND METHODS

2.1  |  Study area

We examined six states in the US Corn Belt that had the highest 
total cover cropped area based on the most recent US Agricultural 
Census in 2017: Iowa, Indiana, Missouri, Ohio, Illinois, and Michigan 
(ordered by descending cover cropped area; Figure 1). Among these 
states, the “3I” states comprise the core Corn Belt characterized by 
high-yielding, commercial-scale agriculture predominantly in maize-
soybean rotation, while the states of Missouri, Ohio, and Michigan 
comprise typically lower-yielding outer-Corn Belt regions (Green 
et al., 2018; NASS, 2021). Each individual state had over 270,000 ha 
of cover crops in 2017, with Iowa having the most area (394,000 ha). 
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In aggregate, 5.0% of agricultural fields in our study area were cover 
cropped in 2017, up from 2.6% in 2012 (NASS, 2021).

Due to the low prevalence of cover cropping on the landscape 
and recent expansion (Figures 1 and 2), we focused on maize and 
soybean yield outcomes in the 2019–2020 rotation cycle. By looking 
at these most recent years, we were able to analyze more fields with 
a consistent history of cover cropping across broad environmental 
conditions.

2.2  |  Data

We identified cover crop presence at a 30 m resolution each year 
using a recently developed map dataset spanning 2000–2021 
derived from satellite data (Figure  3; Zhou et al.,  2022). Briefly, 
this dataset was produced by training a machine learning model 
to identify annually-varying county-year-specific greenness 

thresholds indicative of cover cropping in daily time series of vege-
tation greenness. The daily time series was generated at 30 m pixel 
resolution by fusing Landsat and MODIS satellite observations. 
The dynamic threshold and phenology-based approach effectively 
address the varying growth conditions of cover crops across large 
geographies and over different years, thus making the algorithm 
highly scalable and also largely avoiding confusing signals such as 
weed or perennial grass. Resulting pixel-level predictions of cover 
cropping activity were then aggregated to field boundaries, and 
fields with greater than 40% coverage were considered “cover 
cropped”. Annual estimates of cover cropped area aggregated by 
state are shown in Figure 2 alongside 2012 and 2017 Census es-
timates. When validated against county-level percent area esti-
mates from the 2017 Agricultural Census for counties dominated 
by maize and soybeans, the maps had an R2  =  .81 (root mean 
square error [RMSE]  =  1.25 percentage points). Performance 
was lower across all counties evaluated (R2 = .63 and RMSE = 2.3 

F I G U R E  1  Study area and cover crop prevalence. (a) Cover cropping prevalence in the US Corn Belt by county in 2012 and 2017, shown 
as a percentage of total agricultural area. Study area boundary is outlined in bold. (b) Study area location within the United States. Counties 
with available cover crop maps are shown in blue. (c) Total cover crop area per state in the most recent Agricultural Census, with the six 
states in this study highlighted in blue. Data for (a) and (c) are from the 2012 and 2017 Agricultural Census (NASS, 2021).
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    |  797DEINES et al.

percentage points), suggesting the approach was most effective 
for maize and soybean fields. At the field level, the cover crop map 
dataset had accuracies between 65% and 90% when compared 

against opportunistic field-level ground truth data of variable 
quality from single counties in Illinois, Indiana, and Iowa. Field-
level accuracies were positively correlated with ground dataset 

F I G U R E  2  Cover crop trends over time. Solid line depicts annual state-aggregated cover crop area between 2000 and 2020, based 
on counties in the cover crop map dataset (Figure 1). (a) Annual cover crop by absolute area. (b) Annual cover crop by percent of total 
agricultural area planted from the USDA National Agricultural Statistics Service (NASS) annual surveys. Red dots show NASS agricultural 
census estimates of cover cropping for 2012 and 2017 for comparison.

F I G U R E  3  Workflow overview. Cover crop and yield data are shown for St. Joseph County, Michigan (white outline).
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quality. More details on the generation and accuracy evaluation 
of the cover crop maps can be found in Zhou et al. (2022). In our 
analysis, we minimized the impact of inaccurate classifications in 
any year by filtering the map dataset based on multiyear classifica-
tion histories for each pixel (Section 2.3).

This dataset thus provides the annual presence or absence of 
cover crops each year at field-level resolution. It does not, however, 
provide information about the species of cover crop used or specify 
the timing of cover crop termination prior to planting of the main 
crop. Our analysis, therefore, represents the yield impacts of cover 
cropping as practiced in aggregate across the region. Based on sur-
veys (Wallander et al., 2021), the majority of cover crops in our study 
area and time period are rye. The full cover crop map dataset covers 
12 states in the larger Corn Belt region, excluding counties with less 
than 40% maize and soybeans. Available counties in our study region 
are displayed in Figure 1a,b.

We obtained annual, crop-specific maize and soybean yields 
at 30 m resolution from previously published methods based 
on the Scalable Crop Yield Mapper (SCYM) algorithm (Figure  3; 
Jin et al.,  2017; Lobell et al.,  2015). Briefly, SCYM uses region-
specific crop model simulations and weather covariates to inter-
pret remotely sensed crop phenology for each satellite pixel, thus 
estimating pixel-level yields. Because previous work generated 
yield maps through 2018, we used Google Earth Engine (Gorelick 
et al.,  2017) to extend estimates to years 2019 and 2020 based 
on Landsat satellite data using the maize methodology described 
in Deines et al. (2021) and the soybean methodology described in 
Dado et al. (2020).

The accuracy of these remotely-sensed, sub-field scale yield 
maps is a key element to understand when making inferences 
about management impacts. Because these datasets were trained 
and validated on over 1 million ground truth fields for each crop 
spanning the full Corn Belt for 2008–2018, they are better eval-
uated than any other satellite yield dataset to date, particularly at 
high-resolutions (e.g., pixel-scale) rather than aggregated mean 
yields (e.g., counties in the United States). At the pixel level, these 
approaches capture 40% and 27% percent of pixel-level yield vari-
ation in maize and soybeans, respectively (and 69% and 63% of 
county-aggregated yields). While these satellite yield estimates 
have noise, as long as this error is random and uncorrelated with 
the treatment variable, it can still be used for inference; the noise 
may, however, lead to attenuation bias and underestimate effects 
(Jain,  2020). Additionally, the ground data—combine harvesters 
with onboard yield monitors—have some noise, which can lead 
to an underestimation of model performance (Burke et al., 2021). 
Along with direct accuracy comparison with ground truth, accuracy 
can also be judged by how well the dataset can reproduce inferred 
responses to external variables, particularly those not in the model 
(Burke et al., 2021; Burke & Lobell, 2017; Lobell et al., 2019). For 
example, SCYM maize estimates and ground yield data both dis-
played similar responses to management and environmental varia-
tion not included in the SCYM model, including linear and nonlinear 
responses (Deines et al.,  2021). A full set of validation plots and 

metrics can be found in the source publications (Dado et al., 2020; 
Deines et al., 2021).

We acquired environmental and weather data from available 
gridded datasets for the study region to describe annually varying 
weather as well as static field properties (Figure 3). Static properties 
included 1981–2010 climate normals from PRISM (Daly et al., 2008, 
2015), field slope derived from the National Elevation Dataset 
(USGS,  2012), and soil variables from the gSSURGO soil database 
(NRCS,  2016). Specific soil variables of interest can be found in 
gSSURGO's Value Added Look Up Table (Valu1) of derived soil at-
tributes and included the soil productivity indices for corn and soy-
bean (known as the National Commodity Crop Productivity Index, 
or NCCPI), root zone available water content, and soil drainage class. 
Annual monthly and seasonal summaries of temperature and pre-
cipitation were extracted from the GRIDMET climate reanalysis 
product at 4 km resolution (Abatzoglou, 2013). Monthly estimates 
of soil moisture and climate water deficit for the growing season 
were obtained from the TerraClimate dataset, also at 4 km resolu-
tion (Abatzoglou et al., 2018). The full set of environmental covari-
ates, their temporal aggregation period, and their data sources are 
provided in Table S1. Subsets of covariates selected for use during 
model development and analysis are listed in Tables 1 and 2.

2.3  |  Sampling approach

Here, we defined the treatment as pixels which were classified as 
cover cropped for the sampling year of interest (2019 or 2020) and 
had a history of being cover cropped at least three times between 
2015 and 2020 based on the satellite-derived cover crop map dataset 
(Figure  3). We included cover cropping history to guard against 
spurious classifications in the satellite dataset and to allow for some 
accumulation of soil benefits from cover cropping. Because cover 
cropping is relatively rare on the landscape (~5% of agricultural area 
in the study region), we designed an exhaustive sampling technique 
to generate one random sample point for all cover cropped field 
entities in the map dataset. As we lack dynamic field boundaries that 
reflect year-to-year changes in cropping and management practices 
like cover cropping, we defined these “field entities” as contiguous 
groups of pixels at least 5 ha in size with the same cover crop history 
for 2015–2020. We then randomly sampled one point location from 
each field entity. This resulted in 10,877 unique sample locations for 
maize and 11,827 unique locations for soybeans across the study 
region (Figures 3 and 4).

For control locations, we first isolated all pixels in the six-state 
study region which were never classified as “cover cropped” in the 
map dataset between 2000 and 2020. We then generated a ran-
dom point dataset across the full region designed to balance sample 
locations in space and provide ample control locations to better en-
sure good overlap in covariate space with the treatment locations 
(see Section 2.4). After generating a uniform 50 km2 grid over the 
study region, we randomly sampled 150 points per grid cell over 
locations which were either maize or soybean in both 2019 and 
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    |  799DEINES et al.

2020, with crop type assigned from the USDA NASS Cropland Data 
Layer (Boryan et al., 2011). We note that the purpose of the sam-
pling grid was to ensure a spatially even sampling density; grid lo-
cation was not considered when weighting control samples based 
on covariate similarity to treatment samples (see Section 2.4). This 
resulted in 40,010 maize and 35,334 soybean control point sam-
ples across the study region (Figure 4). For each sampling point, we 
then extracted the crop type, remotely sensed yield, soil and slope 
information, and weather covariates for both 2019 and 2020. The 
compiled point dataset can be accessed at https://doi.org/10.5281/
zenodo.7199708. To balance open data with farmer data privacy 
(Zipper et al., 2019), location information is provided at the county-
level only (latitude and longitude coordinates have been removed).

2.4  |  Causal forests analysis

Our study uses observational satellite datasets of cover cropping 
and yields. Unlike in randomized control experiments, treatment 
status in observational studies cannot be assigned at random. This 
presents a challenge for identifying causal effects, since treatment 
status is likely correlated with other factors that also influence the 
outcome. These factors may be observed or unobserved and can 
confound an observational analysis if not accounted for (Athey & 
Imbens,  2017). In our application, farmers might implement cover 

cropping on lower- or higher-yielding fields, making it difficult to as-
sess how cover cropping itself affects crop yields. Here, we address 
this challenge by using causal forests, a machine learning approach 
designed to estimate treatment effects in observational data (Athey 
et al., 2019).

Causal forests are a recent adaptation of the classic ran-
dom forests algorithm, which generates consensus predic-
tions from many individual classification or regression trees 
(Breiman, 2001). Broadly, causal forests estimate treatment ef-
fects by comparing outcomes for each treatment sample against 
available control samples which are weighted based on their 
similarity to the treatment sample. In this way, they act as an 
adaptive kernel method well suited to cases with heterogeneity 
in treatment effects (Athey et al., 2019; Wager & Athey, 2018). 
In other words, for our study, causal forests allow us to use 
each field's closest neighbors in covariate space to generate a 
counterfactual yield estimate under the alternative management 
practice. Furthermore, causal forests guard against confound-
edness, including by unobserved variables, by using a “doubly 
robust” treatment estimation method that combines treatment 
propensity weighting (Rosenbaum & Rubin,  1983)—in our case, 
how likely a field is to be cover cropped—and regression adjust-
ment based on a model specifying the expected outcome—in our 
case, a yield model. This doubly robust method is referred to 
as augmented inverse-propensity-weighted estimation (Robins 

Treatment propensity 
(30 years climate normals) Expected yield outcome Treatment effect

Longitude Soil suitability index Soil suitability index

May precip July VPD July max temp

July VPD Aridity (June–August) April precip

Latitude Soil PAWS Solar radiation (June–August)

June Precip June precip April soil moisture

July Precip April soil moisture July VPD

April mean temp April max temp June Precip

June VPD June max temp Aridity (June–August)

May mean temp August max temp Soil PAWS

August mean temp July precip April max temp

June mean temp July max temp May mean temp

July mean temp June VPD August max temp

Slope May mean temp Slope

Soil drainage class Year Drainage class

April precip Solar radiation (June–Aug) July precip

Soil PAWS May–Aug precip May–Aug precip

Soil suitability index Soil drainage class June–August mean temp

June–August mean temp June VPD

June max temp

Year

Note: Variables are listed in order of their relative importance based on the number of splits.
Abbreviations: PAWS, plant available water storage; precip, precipitation; temp, temperature; VPD, 
vapor pressure deficit.

TA B L E  1  Variables used in the causal 
forests analysis for maize samples.
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Treatment propensity  
(30 years climate normals) Expected yield outcome Treatment effect

Longitude June max temp June max temp

Latitude Soil PAWS June VPD

June VPD August max temp August precip

May mean temp August precip Soil PAWS

June mean temp Year Soil suitability index

July mean temp April soil moisture April precip

August mean temp Soil suitability index Aridity (June–August)

April mean temp July VPD July VPD

June precip April precip May soil moisture

July precip May soil moisture April soil moisture

May precip April max temp July precip

April precip June VDP August max temp

Soil drainage class May mean temp July max temp

Slope April mean temp Slope

July VPD May min temp May precip

Soil PAWS Aridity (June–August) April max temp

Soil suitability index July max temp May mean temp

July precip May min temp

May precip April mean temp

Soil drainage class

Year

Note: Variables are listed in order of their relative importance based on the number of splits.
Abbreviations: PAWS, plant available water storage; precip, precipitation; temp, temperature; VPD, 
vapor pressure deficit.

TA B L E  2  Variables used in the causal 
forests analysis for soybean samples.

F I G U R E  4  Locations of treatment and control point samples for maize and soybeans.
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& Rotnitzky,  1995), and minimizes sensitivity to misspecifica-
tion in either model (Athey et al., 2019; Scharfstein et al., 1999). 
Causal forests generate mathematically valid CIs and, as a ran-
dom forests method, are robust to large numbers of covariates, 
nonlinear interactions, and overfitting without requiring explicit 
model specification (Athey et al., 2019; Athey & Imbens, 2016; 
Belgiu & Drăgu,  2016; Wager & Athey,  2018). Recent studies 
have found causal forests are better able to detect and quan-
tify heterogeneous treatment effects than conventional econo-
metric methods (Baiardi & Naghi, 2020; Farbmacher et al., 2019; 
Strittmatter, 2019).

Recent work has applied causals forests to satellite data in the 
US Corn Belt to understand the yield impacts from conservation 
tillage (Deines et al., 2019) and crop rotations (Kluger et al., 2022). 
In the latter study, causal forests estimates of yield impacts using 
satellite-derived yields and crop type maps had a statistically sig-
nificant positive correlation with estimates from experimental field 
sites, although they did tend to underestimate the treatment effect 
in this case.

Here, we used the “grf” package (Tibshirani et al., 2018) in R (R 
Core Team, 2014) to run a separate causal forests analysis for maize 
and soybeans. We designated cover cropping as the treatment vari-
able and log yield as the outcome. We used log yields to allow for the 
magnitude of yield impacts to be multiplicative; results were similar 
for models using absolute yield values. The causal forests algorithm 
includes two model subroutines to model the likelihood of treatment 
(propensity model) and the expected outcome (yield model) used in 
the doubly robust treatment estimation. We first used the full set of 
static covariates, including soil properties and climate normals, to es-
timate treatment propensity using 2000 trees and default function 
settings. To account for spatial factors in adoption, we also included 
latitude and longitude as covariates. The full set of variables used are 
listed in Table 1 (maize) and Table 2 (soybeans) in order of variable 
importance within each sub-model, with importance defined by the 
useful but imperfect metric of the number of times each variable 
was used to split the individual trees. To ensure control observa-
tions provided suitable neighbors for treatment observations in co-
variate space and meet causal forests' assumption of overlap (Athey 
et al., 2019), we removed observations with propensity scores below 
0.05 (samples which were unlikely to be treated based on the pro-
pensity model). No samples had a propensity score higher than 0.95, 
so there was no need to filter samples with very high treatment like-
lihoods. This resulted in a final sample size of 45,595 for maize and 
44,235 for soybeans.

For the yield outcome sub-model, we selected crop-specific vari-
able sets by using multivariate adaptive regression splines (MARS) 
models (Friedman, 1991) as implemented in the “earth” R package 
(Milborrow, 2019) with the full set of annual weather covariates and 
soil and slope properties. MARS selected variables, along with a year 
term, were then used in the causal forests routine to model expected 
outcomes, again with 2000 trees and default parameters. Selected 
variables and their relative importance can be found in Tables 1 and 
2 for maize and soybeans, respectively.

Finally, we used the variables selected for the outcome model 
and all soil properties to estimate the treatment effects of cover 
cropping using the ‘causal_forest’ function in grf with 2000 trees 
and default parameters. We converted treatment effects from log 
yield to percent yield for interpretation. Results are reported as 
the main effect with a 95% CI, with the latter estimated within the 
“grf” package by fitting groups of trees on subsets of the data and 
examining variance of predictions across these groups (Tibshirani 
et al., 2018). This CI is a measure of the statistical bounds of the es-
timated treatment effect, given the data. All else being equal, noisier 
input data will result in wider CIs.

We then tested for heterogeneous treatment effects using the 
‘test_calibration’ function in grf and, finding statistically significant 
heterogeneity, we examined covariates associated with high and low 
yield impacts using principal components analysis on the six most 
important covariates in the treatment effects model for each crop 
(Tables 1 and 2). To map treatment effects in space, the conditional 
average treatment effects (CATE) for each observation were aver-
aged on a 5 km2 grid across the region.

2.5  |  Robustness check for causal forests analysis

Using the maize causal forests model, we ran a placebo test in which 
we replaced 2019–2020 yields with the mean yield for each sample 
between 2000 and 2010, based on the same SCYM satellite dataset. 
This test helps us address two potential weaknesses in our method: 
(i) that there is one or more unobserved variables which strongly 
influence field selection into the cover cropping treatment that is 
not captured by our suite of soil and weather variables, nor mitigated 
by the doubly robust properties of the causal forests framework and 
(ii) that there is some error in treatment assignment based on the 
remotely sensed cover crop map datasets. Because cover cropping 
has only expanded in recent years, we assume the treatment status for 
this placebo test to be unrelated to yield outcomes. Thus, we would 
expect to find no treatment effect if farmers were not preferentially 
selecting lower or higher yield fields into cover cropping. Similarly, 
if the treatment status assignment was not meaningful for the main 
statistical analysis, we might expect to find a similar treatment effect 
in this placebo test.

3  |  RESULTS

The causal forest results indicated that fields where cover crops were 
adopted for 3 or more years experienced an average maize yield loss 
of 5.5% (95% confidence interval [CI]: 5.1–5.9) in the study region, 
compared with fields that did not practice cover cropping. Nearly all 
locations appeared to experience negative effects, with only 0.6% 
of observations estimated to have a positive CATE (treatment effect 
conditioned on that observation's properties). In general, impacts ap-
peared most negative in Iowa and Northern Illinois compared with 
the rest of the study region (Figure 5). These areas were generally 
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associated with better soil ratings, higher mid-season temperatures, 
and lower amounts of April rainfall for the 2 years in which yield out-
comes were considered (2019 and 2020) (Table 1; Figure 6).

For soybean, we also estimated negative impacts of cover crops 
on soybean yields, although the effects were smaller. On average, 
soybean yields were reduced by 3.5% (95% CI: 3.2–3.9) following 
cover crop adoption, with 2.6% of CATEs having a positive value 
(Figure 7). Also similar to maize, the most negative impacts were ob-
served for soybean on the better soils (i.e., those with higher NCCPI 
soil productivity ratings), although these effects were more muted 
than for maize (Table 2; Figure 8). Average daytime temperature and 
vapor pressure deficit in June were also important sources of het-
erogeneity for soybean, with fields that experienced warmer Junes 
exhibiting the most negative outcomes. Lower amounts of early 
(April) and late-season (August) precipitation also were associated 
with larger yield losses (Table 2; Figure 8).

The results were robust to using yield levels rather than log yields 
as the response variable. For maize, the mean effect when using lev-
els was a yield loss of 5.2% compared with 5.5% for logs, while for 
soybean the mean effect was 3.5% for both. The spatial patterns 
and interaction with covariates were also very similar for the two 
approaches. For the placebo test based on mean 2000–2010 maize 
yields, the estimated treatment effect was not significantly different 

from zero (average treatment effect  =  −0.4%; 95% CI: −0.9–0.1). 
The mean effect size in the placebo test was an order of magnitude 
smaller than the main test using the observed 2019–2020 yields 
(0.4% vs. 5.5% reduction). This null effect lends strength to the 
causal forests methodology for guarding against bias from the selec-
tion on unobserved variables.

4  |  DISCUSSION

Our estimated mean yield loss of 5.5% for maize is consistent with 
results from experimental and modeling studies, especially when 
considering that the predominant species used for cover cropping 
in the study region have been non-legumes such as cereal rye and 
annual ryegrass (Wallander et al., 2021). For example, a global meta-
analysis reported an average yield loss of 4% across studies with 
various combinations of primary and cover crop species (Abdalla 
et al., 2019), finding that non-legume cover crops generally resulted 
in greater yield losses. The simulation study of Qin et al. (2021) pre-
dicted a 3.9% yield loss in Illinois for maize following annual ryegrass 
in Illinois.

Comparison of soybean results with previous studies is more dif-
ficult because of the relative lack of experiments using a legume as 

F I G U R E  5  Distributions of maize yield impacts from cover cropping in 2019–2020. (a) Mean conditional treatment effects by aggregating 
all samples on a regular 5 km2 grid. The histogram scales provide the distribution of treatment effects across all samples. (b) Distribution of 
treatment effects by state. For all plots, the red line indicates the average treatment effect for the entire region.
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the primary crop. For instance, none of the 154 yield comparisons 
performed in Abdalla et al. (2019) included soybean as the primary 
crop. In soybean experiments in Argentina, Alvarez et al. (2017) re-
ported ~2% yield losses following cover crops, which were smaller in 
magnitude but not statistically distinguishable from the yield losses 
for maize following non-legume cover crops. Qin et al.  (2021) re-
ported no significant differences in simulated soybean yields with 
and without cover crops, although the relatively small number of 
simulations led to wide CIs.

In addition to providing an estimate of the magnitude of yield 
impacts in farmers' fields, our results provide some potentially 
useful clues about the mechanisms behind the yield impacts. One 
well-known mechanism from prior work relates to nitrogen (N) 
dynamics. Non-legume cover crops immobilize a substantial frac-
tion of soil N—indeed this is one of their primary benefits with 
regards to reducing N losses—and the release of N after termi-
nation is often too slow to avoid some N stress for the primary 
crop in the current year. Thus, experiments and simulations tend to 
show larger impacts on fields with fewer fertilizer inputs (Abdalla 
et al., 2019; Qin et al., 2021). In our case, although we did not have 
fertilizer rate information for the commercial fields in this study, we 
point towards two features that are consistent with the importance 
of N dynamics. First, we found greater yield losses for maize than 
soybean, which likely reflects soybean's lower need for fertilizer 
N. Second, we found that maize yield impacts were significantly 
more negative on fields with a high soil productivity index (NCCPI). 

Since these fields have higher yield potential, they accordingly have 
higher N needs to meet their yield potential. That is, immobilization 
of N is more likely to affect the crop when other yield constraints 
are less binding.

A second mechanism highlighted in modeling work is that cover 
crops can compete for water, and in particular maize yield losses 
can be exacerbated when cover crops are used prior to dry growing 
seasons. Indeed, our results indicate that April precipitation was an 
important determinant of maize yield loss, with the most negative 
yield impacts observed in the locations and years with less rainfall 
(Figure 6). Similarly, a recent meta-analysis of dryland systems found 
that cover crops reduced soil water content by 18% at planting on 
average, and that cover crops may impact yields when annual precip-
itation is below 700 mm (Garba et al., 2022). However, these effects 
may be at least partially counteracted on longer time horizons by 
positive changes in soil physical properties such as water holding 
capacity, though changing soil physical properties by cover crop 
usually takes a long time to realize. One study examining fields in 
central Iowa with 13-year winter rye cover crop history found cover 
crops led to significant ~10% and ~20% increases in soil water field 
capacity and plant available water, respectively, and did not show 
significant yield differences compared with control fields (Basche 
et al., 2016). This suggests subsidies for cover cropping could be fo-
cused on years following adoption and reduced over time.

A third potential mechanism relates to potential O2 depletion 
in the soil during the early growing season, especially during wet 

F I G U R E  6  Heterogeneous treatment effects by environmental covariates for maize. (a) Covariate distributions by treatment effect group. 
(b) Principal components analysis for the low- and high-impact terciles. Vectors indicate the strength of each covariates' contribution to axis 
separation. All: Treatment groups are defined based on terciles from all samples, with the “high-impact tercile” representing samples with 
the most negative-yield impacts and the “low-impact tercile” representing samples with the least (and occasionally positive) yield impacts. 
Covariates examined represent the six most important variables in the causal forests estimates of treatment effects.
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springs (e.g., existing O2 stress may be exacerbated by cover crops 
due to the further consumption of O2), whereby the activity of soil 
microbes stimulated by the cover crop consumes O2 to the point 
of stressing the primary crop. Prior modeling work has shown that 
O2 stress can be a non-trivial component of yield loss in maize fol-
lowing a cover crop (Qin et al., 2021). This mechanism is difficult to 
disentangle from the effects of water stress since additional water 
tends to enhance microbial activity and exacerbate O2 depletion 
while at the same time alleviating water stress. Nonetheless, we 
find some limited evidence for this mechanism, particularly in 
soybean, where higher temperatures in June are associated with 
greater yield penalties. However, these patterns could also be ex-
plained by greater weed competition for soybean in these condi-
tions, especially if termination of the cover crop is not complete. 
With spring in the US Midwest may experience wetter conditions 
(Li et al., 2019; Prein et al., 2017), fully understanding this factor 
becomes more critical.

The negative yield impacts reported here represent an important 
downside to the rapidly expanding use of cover crops. At current 
prices (roughly $197 per metric ton [$5 per bushel] of maize and 
$441 per metric ton [$12 per bushel] of soybean), a 5% loss of maize 
grain yield or 3% loss of soybean yield would represent roughly $100 

and $50 per hectare, respectively, in foregone revenue ($40 and $20 
per acre). When added to the cost of implementing cover crops and 
technical overhead (Roesch-Mcnally et al., 2018), recently estimated 
to have a median cost of $99 per hectare but with large variability 
(Bowman et al., 2022), this represents a formidable obstacle to long-
term adoption of the practice.

Negative yield impacts could also counteract come of the public 
benefits of cover cropping, since productivity declines undoubtedly 
lead to substantial indirect environmental costs associated with 
other lands having to make up the shortfall in production. That is, 
negative effects on total factor productivity in the study region 
would contribute to the expansion of cultivated land area both within 
and outside of the U.S. (Villoria, 2019), with associated impacts on 
carbon and N cycles. A full exploration of the tradeoffs associated 
with the indirect impacts of yield declines is left to future work.

Optimistically, it is possible the currently negative yield impacts 
could be mitigated with improved management practices, such as 
the choice of cover crop species and the timing of termination prior 
to planting. While subsidy programs increase financial support to 
farmers for adopting cover crops, technical assistance is also war-
ranted and may be equally important to realize the promise of cover 
crops.

F I G U R E  7  Distributions of soybean yield impacts from cover cropping in 2019–2020. (a) Mean conditional treatment effects by 
aggregating all samples on a regular 5 km2 grid. The histogram scales provide the distribution of treatment effects across all samples. (b) 
Distribution of treatment effects by state. For all plots, the red line indicates the average treatment effect for the entire region.
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5  |  CONCLUSIONS

By combining satellite-based datasets on recent cover cropping 
adoption and yields of maize and soybeans, this study provides 
robust identification of the effect of cover cropping on subsequent 
yields of primary crops in the United States. We observe clear 
negative impacts on yields and identify the conditions under which 
these yield penalties are most severe. Our approach provides a 
large sample of real-world, commercial-scale fields, enabling us 
to detect a statistically significant, though relatively small yield 
effect among background yield variability due to weather, soils, 
cultivars, and management. This effect would be difficult to 
estimate with limited sampled sizes from more time-intensive 
sampling techniques such as crop cuts. By demonstrating an ability 
to track these effects, this method could be used as a low-cost 
approach for ongoing understanding of implementation successes 
and challenges.

Overall, we consider this work to have two important implica-
tions relevant to agricultural policymakers. First, the presence of 
significant yield penalties should motivate efforts to encourage the 
implementation of practices that are known to minimize these pen-
alties. Specifically, most farmers practicing cover cropping currently 
use rye as the cover crop (Wallander et al.,  2021), whereas alter-
natives such as clover, hairy vetch, or other legumes would likely 
result in higher primary crop yields. Ensuring that the cover crop is 
terminated with enough lead time before planting primary crops can 

also reduce the likelihood of significant yield penalties (Marcillo & 
Miguez, 2017; Qin et al., 2021).

Second, given the large heterogeneity of yield penalties, 
policy-makers could encourage adoption of cover cropping more 
strongly in areas that are least likely to experience significant 
penalties. For example, areas with poorer soils and with less sus-
ceptibility to water stress appear to experience the smallest yield 
losses in our study. In many cases, these more humid areas with 
less productive soils may also represent the areas where benefits 
in terms of reduced N losses and improved soil carbon are likely 
to be greatest. We anticipate that public payments for cover crop-
ping will evolve to be a more targeted program that emphasizes 
areas with the largest public benefits and least public costs, just 
as the USDA Conservation Reserve Program currently prioritizes 
parts of farmers' land that is considered environmentally sensitive. 
The yield impacts of cover cropping should be an important factor 
in defining these benefits and costs.
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