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Abstract 

This study confirmed that soil mapping services can produce good quality soil maps showing 

within-field spatial variation of clay and soil organic matter contents. The results were better 

when there was a wider range of variation of the parameter in the field. In those cases, 

correlation coefficients in regression analyses between soil analysis laboratory reference data 

and soil mapping service data were high (R2 between 0.7 to 0.8). A proximal sensor systems 

based on gamma radiation and on EC plus NIRS provided the best soil maps on spatial 

variation of clay and soil organic matter content. The remote sensing sensor system applying 

hyperspectral imaging scored a bit less good than the two proximal sensor systems mentioned, 

yet still useful in precision farming.  
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Introduction 

In the last 15 years, several soil mapping sensor systems and services have been developed for 

precision agriculture. Soil maps are used today for management zoning and variable rate 

applications (Kempenaar et al., 2018). The accuracy of the maps is important, knowing that 

they are a basis for decision making in precision agriculture/smart farming. Farmers of the 

National Field Lab for Precision Agriculture project (NPPL) asked for a comparison of soil 

mapping services under practical conditions.  Such research was not done in The Netherlands 

yet, nor did we find it in literature.  

Therefore, a comparative study on the accuracy of soil maps and services marketed in Dutch 

arable farming was carried out. We focussed on soil mapping services that deliver maps 

showing spatial variation in clay and soil organic matter content within fields. The companies 

involved were asked to provide digital soil maps of four selected arable fields. Data points 

from these maps were compared with reference data. In total, five types of sensor systems 

were studied: (1a and 1b) Electric conductivity sensing (EC and EMI; Lund, 2008), (2) 

Passive gamma radiation sensing (van Egmond et al. 2018), (3) Near infrared sensing (NIRS; 

Knadel, 2015), and (4) remote multispectral imaging (Yuzugullu, 2020).       

The objective of this study was to evaluate how well data from soil maps of different 

commercial  soil mapping services correlate with data from soil analyses in laboratories. 

 

Materials and Methods 

 

Study fields and soil characterization 

Soil sampling and sensor measurements were done on four arable fields in The Netherlands. 

Field size was ca. 5 ha. Tables 1-4 show field average and statistical parameters on clay and 

soil organic matter (SOM) content of the soils. More than 50 top soil samples were randomly 

taken on each field with a soil profile sampler (diameter 3 cm, depth of sampling ca. 20 cm). 

Coordinates of each sampling point was determined with RTK GPS. The soil samples were 

individually stored in plastic bags and sent to Eurofins soil analysis laboratory in Wageningen 



(https://www.eurofins.nl/en/environment/services/soil/soil-analyses/). Eurofins delivered for 

each soil sample an analysis report on clay and SOM content as determined with NIRS in 

their ‘dry lab’ facility.  

In this way, each field had a data set of 50 reference data points for comparison with data of 

the soil mapping services. The 2019 study field was split in to North and South parts, and 

analyses were also done per sub-field. For more details on the fields, see study reports by 

Nysten et al. (2019) and Tigchelhoff et al.  (2020 and 2021).  Figure 1 gives an impression of 

one of the fields with a map of the clay content based on Inverse Distance Weighting (IDW) 

of 50 reference data points (Table 2 shows the corresponding averages and other statistics). 

 

Table 1.  Arable field in Ens, NL, Lat. – Long. 5.84 - 52.66, light clay soil, summer 2018. 

Parameter Clay% SOM% 

Average 9.5 2.5 

Minimum 6 2.1 

Maximum 11 3.6 

RMSE (average) 1.1 0.3 

 

Table 2.  Arable field in Slootdorp, NL, L. – L. 5.03 - 52.92, marine clay soil, summer 

2019. 

Parameter Clay% North Clay% South SOM% North SOM% South 

Average 13.9 27.2 2.1 4.3 

Minimum 4 14 1.3 3.5 

Maximum 20 36 3.6 5.5 

RMSE (average) 9.0 7.0 1.1 1.3 

 

Table 3.  Arable field in Valthermond, NL, L. – L. 6.94 - 52.87, peat soil, spring 2020. 

Parameter Clay % SOM % 

Average 9.5 2.5 

Minimum 6 2.1 

Maximum 11 3.6 

RMSE (average) 1.1 0.3 

 

Table 4.  Arable field in Lemelerveld, NL, L. – L. 6.38 - 52.45, sandy soil, spring 2020. 

Parameter Clay % SOM % 

Average 9.5 2.5 

Minimum 6 2.1 

Maximum 11 3.6 

RMSE (average) 1.1 0.3 

 

Soil mapping systems/services 

Six soil mapping service companies participated in the research. They mapped the arable 

fields as mentioned in the previous section according to their standard practice (SOP). The 

mapping services differed on several aspects. In Table 5, the mapping services studied, are 

summarized. The service of LoonwerkGPS was transferred to Soil Masters in 2019 (1a 

became 1b).The services applied different sensors: electrical conductivity measurement (EC 

or EMI), near infrared sensor (NIRS), passive gamma radiation sensor or multispectral 

cameras. The sensors were mainly used as proximal sensors, either mounted just above the 

soil or in direct contact with the soil. The proximal sensor systems made line scans of the 

https://www.eurofins.nl/en/environment/services/soil/soil-analyses/


field, with every 2 to 5 m a measurement and lines ca. 6 m apart. The remote sensor systems 

applied grid imaging (resolution ca. 10 by 10 m). Processing of the sensor data was also done 

according to SOP of the soil mapping service companies. Data of five soil samples per field 

were provided to the companies so they could do calibration at least partly on the same data. 

It was up to them if they used the samples.  

Each company provided for the analyses a digital map of each field containing spatial data on 

SOM and/or clay content within 2 weeks after scanning the fields. Not all companies could 

deliver clay and SOM content matter maps. Some provided other soil parameters (as well), 

but these were not evaluated in this paper (see study reports by Nysten et al. (2019) and 

Tigchelhoff et al (2020, 2021). More details on the methodology of the companies is on their 

websites (see reference list, also accuracy of GPS applied when scanning). 

 

Figure 1.  Clay (Lutum, %) content map (left) based on 50 soil samples 

analyses and IDW plus topographical information (right). 

 

Data analysis 

The data were organized in a way that reference data points could be compared with nearest 

data points provided by the soil mapping service companies on the basis of given latitude 

longitude coordinates. Microsoft Excel software was used to do so and to do statistical 

analyses.  Linear regression analysis tool and RMSE function were applied to study 

correlation between reference data and mapping service data, and to determine the error 

between reference and mapping service data. Significant correlation was concluded in a 

regression analysis only if the statistical parameter P<0.05. Furthermore, the correlation 

coefficient R2 was calculated with linear regression model of Excel. The higher this 

coefficient, the better the correlation. The root mean sum error (RMSE) was calculated for the 



mapping service data relative to the reference data in order to determine the error between 

reference data and mapping service data. The smaller the RMSE, the smaller the error.  And if 

RMSE was smaller than the standard error SE of the reference data, the map of the soil 

mapping service was better than the IDW map of the reference data only. 

 

Table 5.  Summary of soil mapping services tested on four arable fields in 2018-2020. 

No. Company Sensor Model Orientation Data in years 20xx 

     Clay% OM% 
1a LoonwerkGPS EMI Dualem 

21S 

Proximal  18, 19,  18, 19 

1b Soil Masters EMI Dualem 

21S 

Proximal       19, 20       19, 20 

2 Loonstra & vdW Gamma radiation De Mol Proximal 18, 19, 20 18, 19, 20 

3 Vantage_Agrom. EC and NIRS Veris MSP3 Proximal 18, 19, 20 18, 19, 20 

4 CNH Agxtend EMI  SoilXplorer Proximal 18, 19, 20 18, 19, 20 

5 Bioscope Multispec. cam e.g. 

Sentinel 

Remote       19, 20       19, 20 

 

Results 

In the study reports, all individual regression analyses are shown (Nysten et al, 2019, 

Tigchelhoff et al., 2020, 2021). In Figure 2, as examples, regression analysis plots for clay 

and the 2019 North field (Table 7b) are shown. Data points of reference data are plotted 

against soil mapping service data of the three systems tested on that field. All relationships 

tested significant (P<0.05) with moderate to high correlation coefficients.  

 

 

 

 
Figure 2.  Regression analysis plots showing relation between clay (Lutum) reference 

      (referentie) data and soil mapping service data (top is gamma radiation (2), 

      middle is Veris (3) bottom is Bioscope (5). 



2018 - Light marine clay soil 

The RMSE data in Table 6 show that the soil mapping service data did not differ much from 

the reference data. The absolute errors of the reference data were ca. 1% for clay and 0.4%  

for SOM. The RMSE of the reference data were 1.1% and 0.3%, resp. The average clay and 

SOM content of the field were 9.5 and 2.5%, resp. The RMSE for Veris (3) was relatively 

high (2.34%).This might be related to a difference in additional soil sampling applied by the 

company in 2018 compared to the way the soil sampling was done.    

In the 2018 experiment, correlations were low between reference data and soil mapping 

service data (Table 6). And only in three of six cases, the regression analysis tested 

significant. In those cases, correlation coefficients were between 0.12 and 0.36. Regression 

parameters were better for clay data than for SOM data.  This may be explained by the fact 

that on this field, the range over which the content varied was larger for clay than for SOM. 

The Veris sensor systems had the best statistical evaluation. For clay, the gamma radiation 

sensor system scored in the same order. 

 

Table 6.  Statistical parameters describing the correlation and error between data 

provided by different soil mapping services and reference data (2018, clay soil). 

No. Sensor Clay data SOM data 

  R2 P-value RMSE R2 P-value RMSE 

1a EMI 0.03 >0.05 1.29 0.00 >0.05 0.38 

2 Gamma radiat. 0.34 <0.05 1.00 0.02 >0.05 0.41 

3 EC and NIRS 0.36 <0.05 2.34 0.12  < 0.05 0.44 

1a = LoonwerkGPS, 2 = Loonstra&vanderWeide, 3 = Veris 

 

2019 - Marine clay soil 

Data were analysed at whole field (Table 7a) and sub-field levels (Table 7b, North part of the 

field, and 7c South part of the field).  

The RMSE data in Table 7a show that the soil mapping service data differed from the 

reference data ca. 3% for clay and 0.4% for SOM. For clay, the error was higher than in the 

2018 experiment (3% vs. 1%).  In the 2019 experiment, the variation in the clay content was 

also higher than in the 2018 experiment. The RMSE of the reference data for clay was 3.2% 

and for OM 1.2%.   

Relatively high correlations between reference data and soil mapping service data were 

observed (Tables 7a, 7b and 7c). In all fifteen cases at whole field level and at sub-field 

levels, the regression analyses tested significant. At the whole field level, the correlation 

coefficients were ca. 0.8 for clay and a little lower for SOM. The Veris sensor systems had the 

best statistical evaluation. For clay, the gamma radiation sensor system scored in the same 

order. The Bioscope systems scored quite good on mapping the clay variation of the field. 

Tables 7b and 7c show that if the range in observed data is smaller, the correlations become 

weaker.  Still, correlations were still good at the sub-field level. 

 

Table 7a.  Statistical parameters describing correlation and error between sensor data 

provided by different soil mapping services and the reference data 2019 South clay soil. 

No. Sensor Clay data SOM data 

  R2 P-value RMSE R2 P-value RMSE 

2 Gamma radiat. 0.88   <0.05 3.32 0.52  <0.05 0.87 

3 EC and NIRS 0.85   <0.05 3.29 0.83  <0.05 0.51 

5 Multispec. cam 0.78   <0.05 3.89    
2 = Loonstra&vanderWeide, 3 = Veris, 5 = Bioscope 

 



Table 7b.  Statistical parameters describing correlation and error between sensor data 

provided by different soil mapping services and the reference data 2019 North clay soil. 

No. Sensor Clay data SOM data 

  R2 P-value RMSE R2 P-value RMSE 

2 Gamma radiat. 0.70  < 0.05 3.02 0.24 <0.05 0.57 

3 EC and NIRS 0.80  < 0.05 2.22 0.23  <0.05 0.52 

5 Multispec. cam 0.46  <0.05 3.77    
2 = Loonstra&vanderWeide, 3 = Veris, 5 = Bioscope 

 

Table 7c.  Statistical parameters describing correlation and error between sensor data 

provided by different soil mapping services and the reference data 2019 South clay soil. 

No. Sensor Clay data SOM data 

  R2 P-value RMSE R2 P-value RMSE 

2 Gamma radiat. 0.69  < 0.05 3.24 0.00   >0.05 1.01 

3 EC and NIRS 0.45  <0.05 3.78 0.24    <0.05 0.43 

5 Multispec. cam 0.58 <0.05 4.05    
2 = Loonstra&vanderWeide, 3 = Veris, 5= Bioscope 

 

2020 - Peat soil 

The analysis was on SOM only because clay content was too low on this field. The RMSE 

data in Table 8 show that the soil mapping service data differed from the reference data ca. 

3% for SOM. For SOM, the error was higher than in the 2018 and 2019 experiments (3% vs. 

0.4%).  In this experiment, the variation in the SOM content was also higher than in the 2018 

and 2019 experiments. The RMSE of the reference data SOM was 4.1%.  

Correlations between reference SOM data and soil mapping service data were medium to high 

(ca. 0.6, see Table 8). In all three cases, regression analysis tested significant. The Veris 

sensor system and the gamma radiation sensor system scored in the same order. The Bioscope 

systems also scored quite good on mapping the SOM variation of the field.  

 

Table 8.  Statistical parameters describing the correlation and error between sensor data 

provided by different soil mapping services and the reference data 2020 peat soil. 

No. Sensor Clay data SOM data 

  R2 P-value RMSE R2 P-value RMSE 

2 Gamma 

radiation 

0.07   >0.05 0.48 0.65   <0.05 2.67 

3 EC and NIRS      0.67   <0.05 2.80 

5 Multispec. cam      0.57   <0.05 5.31 
2 = Loonstra&vanderWeide, 3 = Veris, 5= Bioscope 

 

2020 - Sandy soil 

The analysis was also on SOM only because clay content was too low. The RMSE data in 

Table 9 show that the soil mapping service data differed from the reference data ca. 1.5% for 

SOM. For SOM, the error was higher than in the 2018 and 2019 experiments, but lower for 

the 2020 peat experiment.  The RMSE of the reference data SOM was 0.9%.  

Correlations between reference SOM data and soil mapping service data were low (ca 0.2, see 

Table 9). In two of three cases, regression analysis tested significant. The Veris sensor system 

and the gamma radiation sensor system scored in the same order. The Bioscope systems 

scored very poor on mapping the SOM variation in this experiment. This was due to the fact 

that a green manure crop was grown on the field in the winter months so that Bioscope did not 

have sufficient bare soil data for making the soil SOM map. 



 

Table 9. Statistical parameters describing the correlation and error between sensor data 

provided by different soil mapping services and the reference data 2020 sandy soil. 

No. Sensor Clay data OM data 

  R2 P-value RMSE R2 P-value RMSE 

2 Gamma radiat. 0.20   <0.05 0.38 0.07  >0.05 1.63 

3 EC and NIRS      0.25  <0.05 0.91 

5 Multispec. cam      0.14  <0.05 1.75 
2 = Loonstra&vanderWeide, 3 = Veris, 5= Bioscope 
 

Discussion 

Some specific observations and outliers were already discussed in the Result section.Some 

general discussion points are given here.   Variable rate application of seeds, pesticides and 

fertilizers require accurate soil maps  (Kempenaar et al, 2018). The proximal sensor systems 

based on EC + NIRS (Veris) and the passive gamma radiation sensors provided useful soil 

maps on clay content and soil organic matter for precision farming. Both systems performed 

better when there was a wider range of variation of the parameter in the field. Good 

processing and calibration is key in making accurate clay and soil organic matter maps. It is 

better to take an extra soil sample for calibration than minimize on costs of the service. The 

remote sensor system scored less good than the two aforementioned proximal sensor systems. 

However, the maps based on remote sensing are still of interest to end users and precision 

farming, knowing that their cost is lower than the costs of the proximal sensor systems. Cost 

and benefit of the remote and proximal soil mapping services at end user level (farmer) 

remains to be evaluated.  

 

Conclusions 

This research showed that soil mapping services can produce good quality soil maps of 

within-field spatial (2-D) variation of clay and soil organic matter of arable fields. The 

absolute errors of the maps compared to reference data were often smaller than the standard 

errors of the reference data.  

This research also showed that the added value of the maps increases when there is a wider 

range in the variation of clay or soil organic matter content within the field. In those cases, 

correlation coefficients R2 were in order of 0.7 to 0.8.  
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URLs to Soil mapping services/companies in this study: 

- Agri-dataservices Bioscope – Remote sensing bare soil: https://bioscope.nl/  

- Case New Holland - EMI: https://agxtend.com/nl/producten/soilxplorer  

- Loonstra & Van der Weide – Passieve gamma radiation: 

http://www.loonstraenvanderweide.nl/ 

- Soil Masters/LoonwerkGPS - EMI:  https://www.soilmasters.com/ 

- Vantage Agrometius – EC and NIRS: https://www.vantage-

agrometius.nl/product/veris-msp3-bodemscanner/  

 

https://doi.org/10.1007/s11540-018-9357-4
https://www.sciencedirect.com/science/article/abs/pii/S0168169915000885#!
https://www.vantage-agrometius.nl/wp-content/uploads/2020/04/ElectricalConductivity_SoilScience.pdf
https://www.vantage-agrometius.nl/wp-content/uploads/2020/04/ElectricalConductivity_SoilScience.pdf
https://library.wur.nl/WebQuery/wurpubs/547913
https://edepot.wur.nl/529393
https://bioscope.nl/
https://agxtend.com/nl/producten/soilxplorer
http://www.loonstraenvanderweide.nl/
https://www.soilmasters.com/
https://www.vantage-agrometius.nl/product/veris-msp3-bodemscanner/
https://www.vantage-agrometius.nl/product/veris-msp3-bodemscanner/

